core power density
简明释义
堆芯功率密度
英英释义
Core power density refers to the amount of power produced per unit volume within the core of a nuclear reactor or similar system. | 核心功率密度是指在核反应堆或类似系统的核心内,每单位体积产生的功率。 |
例句
1.The core power density 核心功率密度 affects the thermal limits of the reactor.
核心功率密度 核心功率密度 影响反应堆的热极限。
2.The reactor's core power density 核心功率密度 must be carefully monitored to ensure safety.
反应堆的核心功率密度 核心功率密度 必须仔细监控以确保安全。
3.Designing a nuclear plant requires calculations of core power density 核心功率密度 for optimal performance.
设计核电站需要计算核心功率密度 核心功率密度 以获得最佳性能。
4.Engineers are studying how to optimize core power density 核心功率密度 in advanced reactors.
工程师们正在研究如何在先进反应堆中优化核心功率密度 核心功率密度。
5.Increasing the core power density 核心功率密度 can lead to more efficient energy production.
提高核心功率密度 核心功率密度 可以导致更高效的能量生产。
作文
In the field of nuclear engineering, the term core power density refers to the amount of thermal power generated per unit volume within the reactor core. This measurement is crucial for understanding the efficiency and safety of a nuclear reactor. The core power density is typically expressed in watts per cubic meter (W/m³) and plays a significant role in determining how effectively a reactor can operate under various conditions. High core power density can lead to increased thermal output, which may enhance the energy production capabilities of the reactor. However, it also poses challenges regarding heat management and the structural integrity of the reactor components.The concept of core power density is vital when designing a nuclear reactor. Engineers must carefully balance the core power density to optimize performance while ensuring safety. If the core power density is too high, it can lead to overheating, which could potentially damage the fuel rods and other critical components. This risk necessitates advanced cooling systems and robust materials capable of withstanding extreme conditions.Moreover, the core power density is influenced by various factors, including the type of nuclear fuel used, the geometry of the reactor core, and the arrangement of the fuel assemblies. For instance, reactors that utilize enriched uranium fuel typically exhibit higher core power density compared to those using natural uranium. This difference arises because enriched fuels are more efficient at sustaining nuclear reactions, thus generating more power in a smaller volume.In addition to its technical implications, the core power density has broader environmental and economic impacts. Higher core power density allows for more compact reactor designs, which can reduce the land footprint of nuclear facilities. This compactness can be advantageous in regions where space is limited or where there is public resistance to large-scale nuclear installations. Furthermore, optimizing core power density can lead to lower operational costs, as more energy can be produced from a smaller amount of fuel.However, the pursuit of higher core power density must be approached with caution. Regulatory bodies impose strict guidelines to ensure that any increases in core power density do not compromise safety. Continuous monitoring and assessment are essential to maintain the integrity of the reactor and protect the surrounding environment and communities.In conclusion, core power density is a fundamental concept in nuclear reactor design and operation. It encompasses the balance between efficiency and safety, influencing everything from reactor performance to environmental impact. As the demand for clean and sustainable energy sources grows, understanding and optimizing core power density will be crucial for the future of nuclear power. By advancing our knowledge of this key parameter, we can develop safer, more efficient reactors that contribute to a sustainable energy landscape for generations to come.
在核工程领域,术语核心功率密度指的是反应堆核心内每单位体积产生的热功率。这一测量对于理解核反应堆的效率和安全性至关重要。核心功率密度通常以每立方米瓦(W/m³)表示,并在确定反应堆在各种条件下的运行能力方面发挥着重要作用。高核心功率密度可以导致热输出增加,从而可能增强反应堆的能量生产能力。然而,这也会带来热管理和反应堆组件结构完整性方面的挑战。核心功率密度的概念在设计核反应堆时至关重要。工程师必须仔细平衡核心功率密度,以优化性能,同时确保安全。如果核心功率密度过高,可能导致过热,这可能损坏燃料棒和其他关键组件。这种风险需要先进的冷却系统和能够承受极端条件的坚固材料。此外,核心功率密度受到多种因素的影响,包括使用的核燃料类型、反应堆核心的几何形状以及燃料组件的排列。例如,使用富集铀燃料的反应堆通常表现出比使用天然铀的反应堆更高的核心功率密度。这种差异的出现是因为富集燃料在维持核反应方面更有效,因此能在更小的体积中产生更多的能量。除了技术影响外,核心功率密度还具有更广泛的环境和经济影响。较高的核心功率密度允许更紧凑的反应堆设计,这可以减少核设施的土地占用。这种紧凑性在空间有限或公众抵制大型核设施的地区可能是有利的。此外,优化核心功率密度可以降低运营成本,因为可以从更少的燃料中产生更多的能量。然而,追求更高的核心功率密度必须谨慎进行。监管机构对确保任何核心功率密度的增加不会危及安全施加了严格的指导方针。持续的监测和评估对于维护反应堆的完整性以及保护周围环境和社区至关重要。总之,核心功率密度是核反应堆设计和运行中的一个基本概念。它涵盖了效率与安全之间的平衡,影响着从反应堆性能到环境影响的方方面面。随着对清洁和可持续能源来源需求的增长,理解和优化核心功率密度将对未来的核能至关重要。通过推进我们对这一关键参数的认识,我们可以开发出更安全、更高效的反应堆,为未来几代人提供可持续的能源格局。
相关单词