coordination number

简明释义

配位数

英英释义

The coordination number is the number of atoms, ions, or molecules that a central atom or ion can bond with in a complex or crystal structure.

配位数是指一个中心原子或离子在一个复合物或晶体结构中能够与之结合的原子、离子或分子的数量。

例句

1.The coordination number 配位数 of a metal ion can affect its chemical reactivity.

金属离子的 coordination number 配位数 可以影响其化学反应性。

2.A common coordination number 配位数 for transition metals is six, forming octahedral complexes.

过渡金属的一个常见 coordination number 配位数 是六,形成八面体配合物。

3.In a crystal lattice, the coordination number 配位数 indicates how many nearest neighbors surround a given atom.

在晶体格子中,coordination number 配位数 表示一个给定原子周围有多少个最近邻原子。

4.In coordination chemistry, the coordination number 配位数 is often determined by the size and charge of the central atom.

在配位化学中,coordination number 配位数 通常由中心原子的大小和电荷决定。

5.The coordination number 配位数 of tetrahedral complexes is typically four.

四面体配合物的 coordination number 配位数 通常是四。

作文

In the realm of chemistry, the concept of coordination number plays a pivotal role in understanding the structure and behavior of coordination compounds. The coordination number refers to the number of ligand atoms that are directly bonded to a central metal atom in a complex. This number is crucial because it influences the geometry, stability, and reactivity of the compound. For example, a coordination number of six typically leads to an octahedral geometry, which is common among transition metal complexes. Conversely, a coordination number of four may result in either a tetrahedral or square planar arrangement, depending on the nature of the ligands involved.Understanding the coordination number is essential for predicting the properties of metal complexes. In many cases, the coordination number can affect the color, magnetic properties, and catalytic activity of the compound. For instance, the presence of different ligands can alter the electronic environment around the metal center, leading to variations in absorption spectra and reactivity. This is particularly important in fields such as bioinorganic chemistry, where metal ions play critical roles in biological systems.Moreover, the coordination number can vary widely among different metal ions and their corresponding complexes. For example, while many transition metals commonly exhibit coordination numbers of 2, 4, or 6, some heavier metals may show higher coordination numbers. This flexibility allows chemists to design complexes with specific properties for various applications, including drug delivery, catalysis, and material science.The determination of the coordination number can be achieved through various methods, including spectroscopic techniques and X-ray crystallography. These methods provide insights into the arrangement of atoms within the complex, allowing scientists to confirm the coordination number and its implications for the compound's behavior. As research progresses, the exploration of new ligands and metal combinations continues to expand our understanding of coordination chemistry and the significance of coordination number.In summary, the concept of coordination number is fundamental in the study of coordination compounds. It not only helps in classifying these compounds but also provides valuable information about their properties and potential applications. As we delve deeper into the intricacies of coordination chemistry, the coordination number remains a key factor in unraveling the complexities of metal-ligand interactions. By mastering this concept, chemists can better predict and manipulate the behavior of metal complexes in various scientific fields, leading to advancements in technology and medicine.

在化学领域,配位数的概念在理解配位化合物的结构和行为方面起着关键作用。配位数是指直接与配体原子结合的中心金属原子的数量。这个数字至关重要,因为它影响了化合物的几何形状、稳定性和反应性。例如,配位数为六通常会导致八面体几何形状,这在过渡金属配合物中很常见。相反,配位数为四可能导致四面体或方平面排列,具体取决于参与的配体的性质。理解配位数对于预测金属配合物的性质至关重要。在许多情况下,配位数可以影响化合物的颜色、磁性和催化活性。例如,不同配体的存在可以改变金属中心周围的电子环境,从而导致吸收光谱和反应性的变化。这在生物无机化学等领域尤为重要,因为金属离子在生物系统中发挥着关键作用。此外,配位数在不同金属离子及其相应的配合物中可能会有很大的变化。例如,虽然许多过渡金属通常表现出配位数为2、4或6,但一些较重的金属可能会显示出更高的配位数。这种灵活性使化学家能够设计具有特定性质的配合物,用于各种应用,包括药物传递、催化和材料科学。配位数的确定可以通过多种方法实现,包括光谱技术和X射线晶体学。这些方法提供了关于化合物内部原子排列的见解,使科学家能够确认配位数及其对化合物行为的影响。随着研究的进展,对新配体和金属组合的探索不断扩展我们对配位化学的理解以及配位数的重要性。总之,配位数的概念在配位化合物的研究中是基础性的。它不仅有助于对这些化合物进行分类,还提供了关于其性质和潜在应用的宝贵信息。随着我们深入研究配位化学的复杂性,配位数仍然是揭示金属-配体相互作用复杂性的关键因素。通过掌握这一概念,化学家可以更好地预测和操控金属配合物在各个科学领域中的行为,从而推动技术和医学的发展。