coordination bond

简明释义

配位键

英英释义

A coordination bond is a type of chemical bond where a central atom, typically a metal, forms a bond with one or more surrounding ligands through the donation of a pair of electrons from the ligand to the metal.

配位键是一种化学键,其中一个中心原子,通常是金属,通过配体向金属捐赠一对电子,与一个或多个周围的配体形成键。

例句

1.In coordination chemistry, a coordination bond 配位键 is formed between a metal ion and a ligand.

在配位化学中,金属离子与配体之间形成了一个coordination bond 配位键

2.A complex ion is usually held together by multiple coordination bonds 配位键 between the central metal and surrounding ligands.

一个复杂离子通常通过中心金属和周围配体之间的多个coordination bonds 配位键保持在一起。

3.When studying transition metals, understanding the coordination bond 配位键 is crucial for predicting their reactivity.

在研究过渡金属时,理解coordination bond 配位键对于预测它们的反应性至关重要。

4.The strength of a coordination bond 配位键 can vary depending on the nature of the metal and the ligand involved.

一个coordination bond 配位键的强度可以根据所涉及的金属和配体的性质而变化。

5.In biological systems, hemoglobin utilizes coordination bonds 配位键 to bind oxygen molecules.

在生物系统中,血红蛋白利用coordination bonds 配位键结合氧分子。

作文

In the realm of chemistry, the concept of a coordination bond plays a crucial role in understanding how different molecules interact with one another. A coordination bond is a type of chemical bond that occurs when a central atom, typically a metal, forms a bond with one or more surrounding ligands. These ligands are molecules or ions that have lone pairs of electrons, which they can donate to the central atom. This unique interaction not only helps stabilize the structure of complex ions but also influences their reactivity and properties.For instance, consider the coordination compound formed between copper (II) ions and ammonia. In this case, the ammonia acts as a ligand, donating its lone pair of electrons to the copper ion, thereby forming a coordination bond. This bond results in the creation of a stable complex, which exhibits distinct colors and solubility characteristics compared to its individual components. The ability of ligands to coordinate with a metal ion is fundamental in various fields, including biochemistry, materials science, and catalysis.The significance of coordination bonds extends beyond simple compound formation. In biological systems, these bonds are essential for the functioning of metalloenzymes, which are enzymes that contain metal ions at their active sites. For example, hemoglobin, the protein responsible for transporting oxygen in the blood, contains iron ions that are coordinated by histidine residues. The coordination bonds formed in hemoglobin allow it to bind oxygen effectively, demonstrating the importance of these interactions in sustaining life.Moreover, the study of coordination bonds has led to advancements in various technologies. In the field of catalysis, transition metal complexes with strong coordination bonds are often used to facilitate chemical reactions. These complexes can lower the activation energy required for reactions, making them more efficient. This capability is particularly valuable in industrial processes where the speed and efficiency of reactions can lead to significant cost savings.In conclusion, the coordination bond is a fundamental concept in chemistry that underlies many important processes in both nature and industry. By allowing central metal atoms to form stable complexes with ligands, coordination bonds play a vital role in the behavior of various substances. Understanding these bonds not only enhances our knowledge of chemical interactions but also paves the way for innovations in multiple scientific fields. As research continues to explore the intricacies of coordination bonds, we can expect to uncover even more applications and phenomena related to this fascinating aspect of chemistry.

在化学领域,配位键的概念在理解不同分子之间的相互作用中发挥着至关重要的作用。配位键是一种化学键,发生在一个中心原子(通常是金属)与一个或多个周围配体形成键时。这些配体是具有孤对电子的分子或离子,它们可以将孤对电子捐赠给中心原子。这种独特的相互作用不仅有助于稳定复杂离子的结构,还影响它们的反应性和性质。例如,考虑铜(II)离子与氨形成的配位化合物。在这种情况下,氨作为配体,将其孤对电子捐赠给铜离子,从而形成一个配位键。这种键导致形成一个稳定的复合物,与其各个组成部分相比,表现出独特的颜色和溶解度特性。配体与金属离子协调的能力在生物化学、材料科学和催化等多个领域中都是基础。配位键的重要性超越了简单的化合物形成。在生物系统中,这些键对于金属酶的功能至关重要,金属酶是指在其活性位点含有金属离子的酶。例如,血红蛋白是负责运输血液中氧气的蛋白质,含有与组氨酸残基配位的铁离子。血红蛋白中形成的配位键使其能够有效地结合氧气,展示了这些相互作用在维持生命中的重要性。此外,配位键的研究已经推动了多个技术领域的进步。在催化领域,具有强配位键的过渡金属络合物常用于促进化学反应。这些络合物可以降低反应所需的活化能,使反应更高效。这种能力在工业过程中尤为宝贵,因为反应的速度和效率可以带来显著的成本节约。总之,配位键是化学中的一个基本概念,支撑着自然和工业中许多重要的过程。通过允许中心金属原子与配体形成稳定的复合物,配位键在各种物质的行为中发挥着至关重要的作用。理解这些键不仅增强了我们对化学相互作用的认识,也为多种科学领域的创新铺平了道路。随着研究持续探索配位键的复杂性,我们可以期待揭示与这一迷人化学方面相关的更多应用和现象。