coherent scattering cross section

简明释义

相干散射截面

英英释义

The coherent scattering cross section refers to the effective area that quantifies the likelihood of coherent scattering events occurring when a beam of particles or waves interacts with a target, where the scattered waves maintain a fixed phase relationship.

相干散射截面是指量化当粒子或波束与目标相互作用时发生相干散射事件的可能性的有效面积,其中散射波保持固定的相位关系。

例句

1.The measurement of the coherent scattering cross section 相干散射截面 is critical for understanding the interaction of neutrons with matter.

测量相干散射截面对于理解中子与物质的相互作用至关重要。

2.In our experiment, we focused on the coherent scattering cross section 相干散射截面 to analyze the properties of the crystal structure.

在我们的实验中,我们专注于相干散射截面以分析晶体结构的性质。

3.By calculating the coherent scattering cross section 相干散射截面, researchers can predict how particles will behave in a medium.

通过计算相干散射截面,研究人员可以预测粒子在介质中的行为。

4.The coherent scattering cross section 相干散射截面 is often used in nuclear physics to describe interaction probabilities.

在核物理中,相干散射截面常用于描述相互作用的概率。

5.The coherent scattering cross section 相干散射截面 can provide insights into the phase relationships of scattered waves.

在散射波的相位关系中,相干散射截面可以提供深入的见解。

作文

In the field of physics, particularly in the study of scattering phenomena, the concept of coherent scattering cross section plays a crucial role. Scattering refers to the deflection of particles or waves when they encounter an obstacle, and understanding this process is essential for various applications, from medical imaging to material science. The coherent scattering cross section specifically describes the probability of coherent scattering events, where the phase relationship between scattered waves is preserved. This is in contrast to incoherent scattering, where such relationships are lost, leading to different physical implications. The significance of coherent scattering cross section can be observed in many practical scenarios. For instance, in X-ray diffraction studies, researchers analyze the patterns produced when X-rays interact with crystalline materials. The coherent nature of the scattering allows scientists to deduce structural information about the material under investigation. By measuring the intensity of scattered X-rays at various angles, one can infer the arrangement of atoms within the crystal lattice, which is pivotal in fields like solid-state physics and chemistry. Moreover, the coherent scattering cross section is not just limited to X-ray applications; it is also relevant in neutron scattering experiments. Neutrons, being neutral particles, can penetrate matter without causing significant damage. When neutrons are scattered coherently, they provide insights into the magnetic properties and arrangements of atoms in materials. This has profound implications in developing new materials with tailored properties for technological advancements.Another area where coherent scattering cross section is vital is in the realm of quantum optics. Here, researchers study the interaction of light with matter at a quantum level. Coherent scattering processes are fundamental in understanding phenomena such as laser cooling and Bose-Einstein condensation. The ability to manipulate and control coherent scattering can lead to breakthroughs in quantum computing and information technology, where maintaining coherence is essential for the functionality of quantum bits.However, calculating the coherent scattering cross section involves complex mathematical frameworks, often relying on models that describe the interactions between particles and waves. For example, the Born approximation is commonly used to simplify the problem, allowing physicists to estimate the scattering probabilities effectively. Understanding these calculations is crucial for researchers aiming to predict scattering behaviors in various contexts.In conclusion, the coherent scattering cross section is a fundamental concept in the study of scattering phenomena across multiple disciplines in physics. Its implications range from material characterization to advancements in quantum technologies. As our understanding of coherent scattering deepens, we can expect to see innovative applications emerge, further bridging the gap between theoretical physics and practical technology. The study of this concept not only enhances our comprehension of fundamental physical processes but also paves the way for future scientific discoveries that could revolutionize various fields. Overall, the exploration of coherent scattering cross section represents a fascinating intersection of theory and application, highlighting the importance of fundamental research in driving technological progress.

在物理学领域,尤其是在散射现象的研究中,相干散射截面的概念起着至关重要的作用。散射是指粒子或波在遇到障碍物时发生偏转的现象,理解这个过程对从医学成像到材料科学等各种应用至关重要。相干散射截面具体描述了相干散射事件的概率,这些事件中散射波之间的相位关系得以保持。这与非相干散射形成对比,后者中这种关系丧失,导致不同的物理含义。相干散射截面的重要性可以在许多实际场景中观察到。例如,在X射线衍射研究中,研究人员分析当X射线与晶体材料相互作用时产生的图案。散射的相干特性使科学家能够推断出被调查材料的结构信息。通过测量在不同角度下散射的X射线强度,可以推断出晶体晶格内原子的排列,这在固态物理和化学等领域至关重要。此外,相干散射截面不仅限于X射线应用;它在中子散射实验中也很相关。中子作为中性粒子,可以在不造成显著损害的情况下穿透物质。当中子相干散射时,它们提供了关于材料中原子的磁性特征和排列的见解。这在开发具有定制特性的先进材料方面具有深远的意义。另一个相干散射截面至关重要的领域是量子光学。在这里,研究人员研究光与物质在量子水平上的相互作用。相干散射过程是理解激光冷却和玻色-爱因斯坦凝聚等现象的基础。操控和控制相干散射的能力可以引领量子计算和信息技术的突破,因为维持相干性对于量子位的功能至关重要。然而,计算相干散射截面涉及复杂的数学框架,通常依赖于描述粒子和波之间相互作用的模型。例如,Born近似通常用于简化问题,使物理学家能够有效地估计散射概率。理解这些计算对于旨在预测各种背景下散射行为的研究人员至关重要。总之,相干散射截面是研究多个物理学科中散射现象的基本概念。它的影响范围从材料表征到量子技术的进步。随着我们对相干散射理解的加深,我们可以期待看到创新应用的出现,进一步缩短理论物理与实际技术之间的差距。对这一概念的研究不仅增强了我们对基本物理过程的理解,还为未来的科学发现铺平了道路,这些发现可能会革新各个领域。总体而言,对相干散射截面的探索代表了理论与应用的迷人交汇,突显了基础研究在推动技术进步中的重要性。

相关单词

scattering

scattering详解:怎么读、什么意思、用法