central potential

简明释义

中心电位

英英释义

A central potential refers to a type of potential energy that depends only on the distance from a central point, typically used in physics to describe forces that act radially outward or inward from a central source.

中心势能是指一种仅依赖于距离中心点的势能,通常用于物理学中描述从中心源向外或向内作用的力。

例句

1.In a model of atomic structure, the central potential 中心势能 represents the attractive force between electrons and the nucleus.

在原子结构模型中,中心势能 中心势能代表着电子与原子核之间的吸引力。

2.In quantum mechanics, the behavior of a particle in a central potential 中心势能 can be analyzed using spherical coordinates.

在量子力学中,粒子在中心势能 中心势能中的行为可以使用球坐标进行分析。

3.When studying planetary motion, scientists often simplify the problem by assuming a central potential 中心势能 that acts on the planets.

在研究行星运动时,科学家通常通过假设一个作用于行星的中心势能 中心势能来简化问题。

4.The central potential 中心势能 of a gravitational field helps us understand how objects move under its influence.

重力场的中心势能 中心势能帮助我们理解物体在其影响下的运动方式。

5.The central potential 中心势能 is crucial in determining the stability of orbits in celestial mechanics.

在天体力学中,中心势能 中心势能对于确定轨道的稳定性至关重要。

作文

In the realm of physics, particularly in the study of mechanics and fields, the term central potential refers to a specific type of potential energy that is dependent solely on the distance from a central point. This concept plays a crucial role in various physical phenomena, ranging from the orbits of planets to the behavior of electrons in atoms. Understanding central potential is essential for grasping the dynamics of systems governed by gravitational or electrostatic forces.To illustrate the idea of central potential, consider the example of a planet orbiting a star. The gravitational force between the planet and the star can be described using Newton's law of universal gravitation. The potential energy associated with this gravitational force depends only on the distance between the two bodies, which is measured from the center of the star. Thus, we can say that the gravitational potential energy is a function of the radial distance from the star, making it a prime example of central potential.Another significant application of central potential is found in quantum mechanics. In quantum systems, particularly those involving hydrogen-like atoms, the potential energy experienced by an electron due to the nucleus can also be expressed as a function of distance from the nucleus. This leads to solutions of the Schrödinger equation that describe the allowed energy levels of such systems. The simplicity and symmetry of central potential allow for analytical solutions, which are invaluable for theoretical predictions and experimental validations.Moreover, the study of central potential extends beyond classical mechanics and quantum physics into fields such as astrophysics and cosmology. For instance, when examining the motion of stars within galaxies, the gravitational interactions can often be approximated using a central potential. This allows astronomers to model the dynamics of galaxies and predict the behavior of stars under the influence of gravity.The mathematical representation of central potential often involves equations that describe how potential energy varies with distance. For example, the gravitational potential energy (U) can be expressed as U = -G(m1m2)/r, where G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between their centers. This equation highlights the inverse relationship between potential energy and distance, a hallmark of central potential systems.In conclusion, the concept of central potential is fundamental to our understanding of various physical systems. Whether we are analyzing the orbits of celestial bodies, the behavior of subatomic particles, or the dynamics of galaxies, central potential provides a framework through which we can comprehend and predict the interactions within these systems. As we continue to explore the universe and delve deeper into the laws of physics, the significance of central potential will undoubtedly remain a cornerstone of scientific inquiry and discovery.

在物理学领域,特别是在力学和场的研究中,术语中心势能指的是一种特定类型的势能,它仅依赖于与中心点的距离。这个概念在各种物理现象中发挥着至关重要的作用,从行星的轨道到原子中电子的行为。理解中心势能对于掌握由引力或静电力控制的系统的动态至关重要。为了说明中心势能的概念,考虑一个行星围绕恒星运行的例子。行星与恒星之间的引力可以通过牛顿的万有引力定律来描述。与这种引力相关的势能仅依赖于两个物体之间的距离,这个距离是从恒星的中心测量的。因此,我们可以说,重力势能是一个关于恒星的径向距离的函数,使其成为中心势能的典型示例。中心势能的另一个重要应用可以在量子力学中找到。在量子系统中,特别是涉及氢样原子的系统中,由于原子核对电子的影响而产生的势能也可以表示为与原子核的距离的函数。这导致了描述此类系统允许的能级的薛定谔方程的解。中心势能的简单性和对称性使得解析解成为可能,这对理论预测和实验验证是非常宝贵的。此外,中心势能的研究不仅限于经典力学和量子物理,还扩展到天体物理学和宇宙学等领域。例如,在研究星系内恒星的运动时,引力相互作用通常可以用中心势能来近似。这使得天文学家能够建模星系的动态,并预测恒星在引力作用下的行为。中心势能的数学表示通常涉及描述势能如何随距离变化的方程。例如,重力势能(U)可以表示为U = -G(m1m2)/r,其中G是万有引力常数,m1和m2是两个物体的质量,r是它们中心之间的距离。这个方程突出了势能与距离之间的反比关系,这是中心势能系统的一个标志。总之,中心势能的概念是我们理解各种物理系统的基础。无论我们是在分析天体的轨道、亚原子粒子的行为,还是星系的动态,中心势能都提供了一个框架,通过这个框架我们可以理解和预测这些系统中的相互作用。随着我们继续探索宇宙并深入研究物理法则,中心势能的重要性无疑将继续成为科学探究和发现的基石。

相关单词

central

central详解:怎么读、什么意思、用法

potential

potential详解:怎么读、什么意思、用法