hypotenuse
简明释义
英[haɪˈpɒtənjuːz]美[haɪˈpɑːtənuːs]
n. 直角三角形的斜边
复 数 h y p o t e n u s e s
英英释义
The longest side of a right-angled triangle, opposite the right angle. | 直角三角形中,位于直角对面的最长边。 |
单词用法
斜边长度 | |
计算斜边 | |
直角三角形的斜边 | |
用于斜边的毕达哥拉斯定理 |
同义词
反义词
邻边 | The length of the adjacent side can be calculated using trigonometric ratios. | 邻边的长度可以通过三角比计算得出。 | |
对边 | In a right triangle, the opposite side is perpendicular to the adjacent side. | 在直角三角形中,对边与邻边垂直。 |
例句
1.This paper presented the solution of normal vector by using the method of the accumulative hypotenuse trispline curve.
采用累加弦长三次样条参数曲线,先求出离散点处两个方向的切矢,进而求解出该离散点的法矢。
2.Either side of a right triangle that is not the hypotenuse.
直角边直角三角形除斜边之外的两条边的任意一条。
3.Therefore, a right triangle with a hypotenuse of 10 can have an altitude on its hypotenuse of at most 5.
于是,斜边为10的直角三角形斜边上的高必须小于等于5,也就是说,面试官所说的直角三角形根本不存在。
4.Hypotenuse of the composite triangle is actually not a straight line - it is made of two lines.
直角三角形的斜边不是直线-是两条线组成的。
5.The polarization splitting prism is composed of a pair of high precision prisms glued together, wherein a prism hypotenuse is plated on the PBS medium film.
偏振分光棱镜是由一对高精度棱镜胶合在一起,其中一个棱镜的斜边是在PBS介质镀膜。
6.I want to compute the length of the hypotenuse of a right triangle.
我想计算下,直角三角形的斜边。
7.This time, you create a simple textbox form that corresponds to the opposite and hypotenuse of a right triangle.
这次,创建的是一个简单的文本框表单,对应于直角三角形的对边和斜边。
8.In trigonometry, the hypotenuse (斜边) is used to define sine and cosine ratios.
在三角函数中,hypotenuse(斜边)用于定义正弦和余弦比率。
9.The Pythagorean theorem states that the square of the hypotenuse (斜边) is equal to the sum of the squares of the other two sides.
毕达哥拉斯定理指出,hypotenuse(斜边)的平方等于另外两个边的平方和。
10.To calculate the distance between two points, you can use the hypotenuse (斜边) of a right triangle formed by their coordinates.
要计算两点之间的距离,可以使用由它们的坐标形成的直角三角形的hypotenuse(斜边)。
11.In a right triangle, the longest side is called the hypotenuse (斜边).
在一个直角三角形中,最长的边称为hypotenuse(斜边)。
12.When building a ramp, it's important to measure the hypotenuse (斜边) to ensure it meets safety standards.
在建造坡道时,测量hypotenuse(斜边)以确保符合安全标准是很重要的。
作文
The concept of the hypotenuse is fundamental in geometry, particularly when studying right triangles. A right triangle is defined as a triangle that contains one angle measuring 90 degrees. The sides of a right triangle are categorized into three distinct parts: the two legs, which form the right angle, and the hypotenuse, which is the longest side opposite the right angle. Understanding the relationship between these sides is crucial for solving various mathematical problems. To comprehend the significance of the hypotenuse, we can refer to the Pythagorean theorem, which states that in a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides. This theorem can be expressed mathematically as: c² = a² + b², where c represents the length of the hypotenuse, and a and b represent the lengths of the other two sides. For example, consider a right triangle where one leg measures 3 units and the other leg measures 4 units. Using the Pythagorean theorem, we can calculate the length of the hypotenuse as follows: c² = 3² + 4², which simplifies to c² = 9 + 16, resulting in c² = 25. Therefore, by taking the square root of both sides, we find that c = 5. This demonstrates that the hypotenuse of this particular right triangle is 5 units long.The hypotenuse has practical applications beyond theoretical mathematics. It is essential in fields such as architecture, engineering, and physics, where understanding the dimensions and relationships of structures is crucial. For instance, when designing a ramp, knowing the length of the hypotenuse helps architects ensure that the slope meets safety standards and is accessible for individuals with disabilities.Moreover, the hypotenuse plays a significant role in trigonometry, a branch of mathematics that deals with the relationships between the angles and sides of triangles. In trigonometric functions, the hypotenuse is often used to determine the sine, cosine, and tangent of an angle in a right triangle. For example, the sine of an angle is defined as the ratio of the length of the opposite side to the length of the hypotenuse. This relationship allows for the calculation of unknown angles and side lengths in various applications, from navigation to physics.In conclusion, the hypotenuse is a vital component of geometry and mathematics as a whole. Its definition as the longest side of a right triangle, combined with its relationship to the other sides through the Pythagorean theorem, illustrates its importance in problem-solving and real-world applications. Whether in academic settings or practical scenarios, mastering the concept of the hypotenuse enhances our understanding of spatial relationships and contributes to our ability to analyze and design effectively.
在几何学中,斜边的概念是基础,特别是在研究直角三角形时。直角三角形被定义为包含一个90度角的三角形。直角三角形的边分为三部分:形成直角的两条直角边和位于直角对面的最长边,即斜边。理解这些边之间的关系对于解决各种数学问题至关重要。要理解斜边的重要性,我们可以引用毕达哥拉斯定理,该定理指出,在直角三角形中,斜边的平方等于其他两条边的平方之和。这个定理可以用数学公式表示为:c² = a² + b²,其中c表示斜边的长度,a和b表示其他两条边的长度。例如,考虑一个直角三角形,其中一条直角边的长度为3单位,另一条直角边的长度为4单位。使用毕达哥拉斯定理,我们可以计算斜边的长度如下:c² = 3² + 4²,这简化为c² = 9 + 16,得出c² = 25。因此,通过对两边开平方,我们发现c = 5。这表明这个特定直角三角形的斜边长度为5单位。斜边在理论数学之外还有实际应用。它在建筑、工程和物理等领域中至关重要,在这些领域中,理解结构的尺寸和关系是至关重要的。例如,在设计坡道时,了解斜边的长度可以帮助建筑师确保坡度符合安全标准,并且便于残疾人士使用。此外,斜边在三角学中也扮演着重要角色,三角学是数学的一个分支,处理三角形的角和边之间的关系。在三角函数中,斜边常用于确定直角三角形中某个角的正弦、余弦和正切。例如,某个角的正弦被定义为对边的长度与斜边的长度之比。这种关系使我们能够计算未知的角度和边长,在从导航到物理的各种应用中都发挥着作用。总之,斜边是几何学和整个数学的一个重要组成部分。作为直角三角形的最长边的定义,加上通过毕达哥拉斯定理与其他边的关系,说明了它在问题解决和现实应用中的重要性。无论是在学术环境还是在实际场景中,掌握斜边的概念增强了我们对空间关系的理解,并有助于我们有效地分析和设计。