siderophile
简明释义
英[ˈsɪdəroʊfaɪl]美[ˈsaɪdərˌfoʊl]
adj. 亲铁的
n. 亲铁元素
英英释义
单词用法
亲铁亲和力 | |
亲铁金属 | |
亲铁特性 | |
亲铁相 |
同义词
喜铁的 | Siderophile elements are typically found in the Earth's core. | 亲铁元素通常存在于地球的核心中。 | |
金属的 | Iron-loving minerals tend to concentrate in certain geological formations. | 喜铁矿物往往集中在某些地质构造中。 |
反义词
亲石元素 | Lithophile elements are typically found in the Earth's crust. | 亲石元素通常存在于地壳中。 | |
亲硫元素 | Chalcophile elements tend to bond with sulfur in mineral deposits. | 亲硫元素倾向于与矿床中的硫结合。 |
例句
1.Three geochemical series, i. e. , the siderophile, chalcophile and lithophile series, have been classified for tin deposits based on geological-geochemical data on tin mineralization in Chi-na.
根据中国锡矿床产出的地质地球化学资料,划分出了三种锡矿床的地球化学系列,即亲铁系列、亲硫系列和亲氧系列。
2.Three geochemical series, i. e. , the siderophile, chalcophile and lithophile series, have been classified for tin deposits based on geological-geochemical data on tin mineralization in Chi-na.
根据中国锡矿床产出的地质地球化学资料,划分出了三种锡矿床的地球化学系列,即亲铁系列、亲硫系列和亲氧系列。
3.The lithophile elements in ordinary and carbonaceous chondrite groups may display either chalcophile or siderophile nature in enstatite chondrites.
普通球粒陨石和碳质球粒陨石中的亲石元素在顽火辉石球粒陨石内显示亲铜或亲铁的性质。
4.In planetary formation, siderophile elements like gold and platinum are often found in the core due to their density and chemical properties.
在行星形成过程中,像黄金和铂这样的siderophile元素通常由于其密度和化学性质而出现在核心中。
5.Geologists often analyze siderophile concentrations in rocks to infer the history of volcanic activity.
地质学家通常分析岩石中的siderophile浓度,以推断火山活动的历史。
6.Researchers study siderophile metals to understand the conditions of Earth's early formation.
研究人员研究siderophile金属,以了解地球早期形成的条件。
7.Iron is classified as a siderophile, meaning it has a strong affinity for metal and tends to bond with it in geological processes.
铁被归类为siderophile,意味着它对金属有很强的亲和力,并倾向于在地质过程中与之结合。
8.The presence of siderophile elements in meteorites provides clues about the formation of the solar system.
陨石中siderophile元素的存在为太阳系的形成提供了线索。
作文
In the field of geology and planetary science, the term siderophile refers to elements that have a strong affinity for iron. These elements are typically found in metallic form and are often associated with the core of planets. Understanding siderophile elements is crucial for geologists as they help in deciphering the history and formation of celestial bodies, including Earth. To elaborate, siderophile elements are those that prefer to bond with iron rather than with silicate minerals. This preference is primarily due to their electronic structure and the thermodynamic stability of their iron compounds. Common examples of siderophile elements include gold, platinum, and nickel. These metals are not only valuable on Earth but also play significant roles in our understanding of planetary formation and differentiation. When studying meteorites, scientists often analyze the abundance of siderophile elements to gain insights into the conditions under which these space rocks formed. For instance, the presence of high concentrations of siderophile elements in a meteorite can indicate that it originated from a differentiated body, where heavy metals sank to the core during the planet's formation. This process is akin to how Earth's core is primarily composed of iron and nickel, with siderophile elements playing a key role in its composition. Moreover, the study of siderophile elements extends beyond meteorites and into the realms of terrestrial geology. By examining the distribution of these elements in the Earth’s crust and mantle, geologists can infer the processes that have shaped our planet over billions of years. For example, volcanic eruptions can bring siderophile elements from the mantle to the surface, allowing scientists to study their concentrations and distributions. This information can reveal details about the mantle's composition and the tectonic activities that have occurred throughout Earth's history. Additionally, the affinity of siderophile elements for iron has implications for mining and resource extraction. As demand for precious metals rises, understanding where these elements are concentrated becomes increasingly important. Mining companies often target areas rich in siderophile elements, as these resources can be economically beneficial. However, this also raises environmental concerns, as mining operations can lead to habitat destruction and pollution. Therefore, a balanced approach to resource extraction is essential, taking into account both economic benefits and environmental impacts. In conclusion, the concept of siderophile elements is fundamental to our understanding of geology and planetary science. From revealing the history of meteorites to shedding light on Earth's formation and resource distribution, siderophile elements play a vital role in various scientific fields. As we continue to explore our planet and beyond, the study of these fascinating elements will undoubtedly provide further insights into the complex processes that govern the universe. By appreciating the significance of siderophile elements, we can enhance our knowledge of not only Earth's geological history but also the broader cosmic context in which our planet exists.
在地质学和行星科学领域,术语siderophile指的是对铁具有强亲和力的元素。这些元素通常以金属形式存在,并且常常与行星的核心相关。理解siderophile元素对于地质学家来说至关重要,因为它们有助于解读天体的历史和形成。进一步说,siderophile元素是那些倾向于与铁结合而不是与硅酸盐矿物结合的元素。这种偏好主要是由于它们的电子结构以及其铁化合物的热力学稳定性。常见的siderophile元素包括金、铂和镍。这些金属不仅在地球上具有价值,而且在我们理解行星形成和分异方面发挥着重要作用。在研究陨石时,科学家通常分析siderophile元素的丰度,以获得这些太空岩石形成条件的见解。例如,陨石中高浓度的siderophile元素可能表明它起源于一个分化体,在该过程中重金属在行星形成期间沉降到核心。这一过程类似于地球的核心主要由铁和镍组成,而siderophile元素在其组成中发挥着关键作用。此外,siderophile元素的研究超越了陨石,进入了陆地地质学的领域。通过检查这些元素在地壳和地幔中的分布,地质学家可以推断出塑造我们星球的过程。例如,火山喷发可以将siderophile元素从地幔带到地表,使科学家能够研究它们的浓度和分布。这些信息可以揭示地幔的成分以及地球历史上发生的构造活动。此外,siderophile元素对铁的亲和力对采矿和资源开采也有影响。随着对贵金属需求的增加,了解这些元素的集中分布变得越来越重要。采矿公司经常针对富含siderophile元素的区域,因为这些资源可能具有经济利益。然而,这也引发了环境问题,因为采矿作业可能导致栖息地破坏和污染。因此,对资源开采采取平衡的方法至关重要,既要考虑经济利益,也要考虑环境影响。总之,siderophile元素的概念是我们理解地质学和行星科学的基础。从揭示陨石的历史到阐明地球的形成和资源分布,siderophile元素在各个科学领域都发挥着重要作用。随着我们继续探索我们的星球和更远的宇宙,对这些迷人元素的研究无疑将为我们提供进一步的见解,以了解支配宇宙的复杂过程。通过欣赏siderophile元素的重要性,我们可以增强对地球地质历史的知识,以及我们星球存在的更广泛宇宙背景。