average excitation energy
简明释义
平均激发能
英英释义
The average excitation energy is the mean energy required to excite a system, such as an atom or molecule, from its ground state to an excited state. | 平均激发能是将系统(如原子或分子)从基态激发到激发态所需的平均能量。 |
例句
1.The study measured the average excitation energy 平均激发能 of the electrons in the material to determine its conductivity.
这项研究测量了材料中电子的平均激发能 average excitation energy以确定其导电性。
2.The average excitation energy 平均激发能 is crucial for understanding the electronic transitions in molecules.
了解分子中的电子跃迁时,平均激发能 average excitation energy至关重要。
3.In quantum mechanics, the average excitation energy 平均激发能 can provide insights into the stability of a system.
在量子力学中,平均激发能 average excitation energy可以提供系统稳定性的见解。
4.Researchers found that the average excitation energy 平均激发能 of the photon emissions varied with temperature.
研究人员发现,光子发射的平均激发能 average excitation energy随温度变化而变化。
5.Calculating the average excitation energy 平均激发能 helps in predicting the behavior of excited states.
计算平均激发能 average excitation energy有助于预测激发态的行为。
作文
In the realm of quantum mechanics and atomic physics, understanding the concept of average excitation energy is crucial for grasping how atoms and molecules behave under various conditions. The term refers to the mean energy required to excite an atom or molecule from its ground state to a higher energy state. This concept is essential in fields such as spectroscopy, where scientists study the interaction between light and matter. When an atom absorbs energy, it can move to an excited state, and the average excitation energy provides insights into the stability and reactivity of that atom or molecule.To elaborate further, the average excitation energy is not just a simple measurement; it encapsulates the distribution of energy levels within an atom. Each element has a unique set of energy levels, and the average excitation energy helps us understand how these levels are populated under different thermal conditions. For instance, in a gas at room temperature, many atoms will be in their ground state, but a fraction may be excited to higher energy levels. The average excitation energy quantifies this phenomenon, allowing scientists to predict the behavior of gases in various environments.Moreover, the average excitation energy plays a significant role in the field of laser technology. Lasers operate on the principle of stimulated emission, which requires atoms to be in an excited state. By knowing the average excitation energy of the lasing medium, engineers can design lasers that operate efficiently at specific wavelengths. This knowledge is pivotal in applications ranging from medical devices to telecommunications, where precise control over light is necessary.Another important application of the average excitation energy is found in astrophysics. Stars generate energy through nuclear fusion, a process that involves exciting atomic nuclei to overcome their repulsive forces. Understanding the average excitation energy of the elements involved in fusion reactions helps astrophysicists model stellar processes and predict the life cycles of stars. This information is vital for understanding the universe's evolution and the formation of elements in stars, which ultimately contributes to the chemical diversity we observe on Earth.In conclusion, the concept of average excitation energy is a fundamental aspect of modern physics that bridges various disciplines, including chemistry, engineering, and astrophysics. It provides a quantitative measure of the energy required to excite atoms and molecules, influencing a wide range of applications from lasers to our understanding of stellar phenomena. As research progresses, the implications of the average excitation energy will continue to unfold, revealing deeper insights into the nature of matter and energy in our universe.
在量子力学和原子物理学领域,理解“平均激发能量”的概念对于掌握原子和分子在各种条件下的行为至关重要。这个术语指的是将原子或分子从其基态激发到更高能态所需的平均能量。这个概念在光谱学等领域中是必不可少的,科学家们研究光与物质之间的相互作用。当原子吸收能量时,它可以移动到一个激发态,而“平均激发能量”提供了对该原子或分子的稳定性和反应性的洞察。进一步阐述,“平均激发能量”不仅仅是一个简单的测量;它概括了原子内能级的分布。每种元素都有一组独特的能级,而“平均激发能量”帮助我们理解在不同热条件下这些能级是如何被填充的。例如,在室温下的气体中,许多原子将处于基态,但有一部分可能会被激发到更高的能级。“平均激发能量”量化了这种现象,使科学家能够预测气体在各种环境中的行为。此外,“平均激发能量”在激光技术领域也发挥着重要作用。激光的工作原理基于受激发射,这需要原子处于激发状态。通过了解激光介质的“平均激发能量”,工程师可以设计出在特定波长下高效工作的激光。这一知识在从医疗设备到电信等应用中至关重要,因为在这些领域中,需要对光进行精确控制。“平均激发能量”的另一个重要应用可以在天体物理学中找到。恒星通过核聚变产生能量,这一过程涉及激发原子核以克服它们的排斥力。了解参与聚变反应的元素的“平均激发能量”有助于天体物理学家建模恒星过程并预测恒星的生命周期。这一信息对于理解宇宙的演化以及恒星中元素的形成至关重要,这最终有助于我们观察到的地球上的化学多样性。总之,“平均激发能量”的概念是现代物理学的一个基本方面,连接了化学、工程和天体物理学等多个学科。它提供了激发原子和分子所需能量的定量测量,影响着从激光到我们对恒星现象的理解等广泛应用。随着研究的进展,“平均激发能量”的含义将继续展开,为我们揭示物质和能量在宇宙中的本质提供更深刻的见解。
相关单词