average deviation
简明释义
平均偏差
英英释义
Average deviation refers to the average of the absolute differences between each data point in a set and the mean of that set. | 平均偏差是指一组数据中每个数据点与该组的均值之间绝对差值的平均数。 |
例句
1.By analyzing the average deviation 平均偏差, we can identify outliers in the data.
通过分析平均偏差 average deviation,我们可以识别数据中的异常值。
2.The average deviation 平均偏差 from the mean in this dataset is surprisingly low.
这个数据集中,平均偏差 average deviation 的值出乎意料地低。
3.The average deviation 平均偏差 for the test scores showed that most students performed similarly.
测试分数的平均偏差 average deviation 显示大多数学生的表现相似。
4.In quality control, a smaller average deviation 平均偏差 indicates more consistent product quality.
在质量控制中,更小的平均偏差 average deviation 表示产品质量更一致。
5.To assess the reliability of the measurements, we calculated the average deviation 平均偏差 of all the readings.
为了评估测量的可靠性,我们计算了所有读数的平均偏差 average deviation。
作文
In statistics, the concept of average deviation is crucial for understanding the variability of a dataset. It measures how much the individual data points deviate from the mean, providing insight into the dispersion of values. The average deviation is calculated by taking the absolute differences between each data point and the mean, summing these differences, and then dividing by the number of data points. This process allows researchers to quantify the spread of data in a way that is easy to interpret and compare.For example, consider a simple dataset representing the ages of five individuals: 22, 25, 29, 32, and 34. To find the mean age, we add the numbers together and divide by the number of individuals. The mean age in this case is 28. Next, we calculate the absolute deviations from the mean: |22-28| = 6, |25-28| = 3, |29-28| = 1, |32-28| = 4, and |34-28| = 6. We then sum these absolute deviations: 6 + 3 + 1 + 4 + 6 = 20. Finally, we divide this sum by the number of individuals (5) to find the average deviation, which is 4.Understanding average deviation is particularly useful in fields such as finance and quality control. In finance, for instance, investors often look at the average deviation of stock prices to assess risk. A high average deviation indicates a volatile investment, while a low average deviation suggests stability. Similarly, in quality control, manufacturers may use average deviation to determine whether products are consistently meeting specifications. A small average deviation implies that the products are produced within a tight range of acceptable standards, which is desirable for maintaining quality.Moreover, the average deviation can also be used in educational settings to evaluate student performance. By analyzing test scores, educators can determine how much individual scores differ from the class average. This information can help identify students who may need additional support or enrichment. For instance, if a classroom has an average deviation of 10 points on a math test, it indicates that students' scores vary significantly from the average, suggesting a need for tailored instruction.In conclusion, the concept of average deviation serves as a fundamental tool in statistical analysis. It helps us understand the extent of variability within a dataset and provides valuable insights across various fields. Whether in finance, quality control, or education, the average deviation offers a clear picture of how data points relate to the mean, enabling better decision-making and improved outcomes. By mastering the calculation and interpretation of average deviation, individuals can enhance their analytical skills and apply them effectively in real-world scenarios.
在统计学中,平均偏差的概念对于理解数据集的变异性至关重要。它测量每个数据点与均值的偏差程度,提供了对数值分散情况的洞察。平均偏差的计算方法是取每个数据点与均值之间的绝对差值,将这些差值相加,然后除以数据点的数量。这个过程使研究人员能够以易于解释和比较的方式量化数据的分布。例如,考虑一个简单的数据集,表示五个人的年龄:22、25、29、32 和 34。要找到平均年龄,我们将这些数字相加并除以人数。在这种情况下,平均年龄为 28。接下来,我们计算与均值的绝对偏差:|22-28| = 6,|25-28| = 3,|29-28| = 1,|32-28| = 4,|34-28| = 6。然后我们将这些绝对偏差相加:6 + 3 + 1 + 4 + 6 = 20。最后,我们将这个总和除以人数(5),得到 平均偏差,即 4。理解 平均偏差 在金融和质量控制等领域特别有用。例如,在金融方面,投资者通常会查看股票价格的 平均偏差 来评估风险。高 平均偏差 表示投资波动性大,而低 平均偏差 则表明稳定性。同样,在质量控制中,制造商可能会使用 平均偏差 来确定产品是否始终符合规格。小的 平均偏差 意味着产品的生产在可接受标准的紧密范围内,这对于维护质量是理想的。此外,平均偏差 还可以用于教育环境中评估学生表现。通过分析测试成绩,教育工作者可以确定个别成绩与班级平均成绩之间的差异。这些信息可以帮助识别可能需要额外支持或提升的学生。例如,如果一个班级在数学测试中的 平均偏差 为 10 分,这表明学生的成绩与平均水平有显著差异,提示需要量身定制的教学。总之,平均偏差 的概念作为统计分析中的基本工具,帮助我们理解数据集中变异的程度,并在各个领域提供有价值的洞察。无论是在金融、质量控制还是教育中,平均偏差 都提供了数据点与均值之间关系的清晰图景,从而促进更好的决策和改善结果。通过掌握 平均偏差 的计算和解释,个人可以提升他们的分析技能,并有效地将其应用于现实场景中。
相关单词