atomic stopping power

简明释义

原子阻止本领

英英释义

Atomic stopping power refers to the ability of a material to slow down and absorb the energy of charged particles, such as electrons or ions, as they pass through the material.

原子阻止能力是指材料减缓和吸收带电粒子(如电子或离子)在其通过时的能量的能力。

例句

1.The atomic stopping power 原子阻止能力 of gold is significantly higher than that of aluminum, making it better for certain applications.

金的atomic stopping power 原子阻止能力显著高于铝,使其在某些应用中表现更好。

2.The atomic stopping power 原子阻止能力 of a material can influence the design of medical imaging devices.

材料的atomic stopping power 原子阻止能力可以影响医学成像设备的设计。

3.Using simulations, scientists calculated the atomic stopping power 原子阻止能力 for different ion beams.

科学家使用模拟计算了不同离子束的atomic stopping power 原子阻止能力

4.In particle physics, understanding the atomic stopping power 原子阻止能力 is crucial for predicting how particles interact with matter.

在粒子物理学中,理解atomic stopping power 原子阻止能力对预测粒子与物质的相互作用至关重要。

5.The researchers measured the atomic stopping power 原子阻止能力 of various materials to determine their effectiveness in radiation shielding.

研究人员测量了各种材料的atomic stopping power 原子阻止能力,以确定它们在辐射屏蔽中的有效性。

作文

The concept of atomic stopping power refers to the ability of a material to slow down charged particles, such as electrons or ions, as they pass through it. This phenomenon is crucial in various fields, including nuclear physics, radiation therapy, and materials science. Understanding atomic stopping power is essential for optimizing the design of detectors, improving the safety of radiation treatments, and enhancing the performance of materials used in high-energy applications. When a charged particle enters a material, it interacts with the atoms of that material, losing energy in the process. The extent to which it slows down depends on several factors, including the type of particle, its energy, and the atomic composition of the material it is traversing. The measurement of atomic stopping power can be quantified using the Bethe-Bloch formula, which describes how energy loss varies with the kinetic energy of the incident particle. In practical applications, such as in radiation therapy for cancer treatment, understanding atomic stopping power allows medical physicists to calculate the optimal dose of radiation needed to target tumors while minimizing damage to surrounding healthy tissues. By selecting materials with appropriate atomic stopping power, they can ensure that the maximum amount of energy is deposited at the tumor site, improving treatment efficacy and reducing side effects. In nuclear physics experiments, researchers often need to detect and measure the properties of particles produced in high-energy collisions. The atomic stopping power of the detector material plays a significant role in determining how effectively these particles can be identified and analyzed. By choosing materials with high atomic stopping power, scientists can enhance their ability to capture and study rare particle interactions. Moreover, in materials science, the concept of atomic stopping power is vital for developing new materials that can withstand extreme conditions, such as those found in nuclear reactors or space environments. Engineers and scientists work to create materials that have the right balance of strength and atomic stopping power to protect sensitive equipment from radiation damage. Overall, the significance of atomic stopping power extends beyond theoretical physics; it has real-world implications in healthcare, research, and engineering. As technology advances, our understanding of atomic stopping power will continue to evolve, leading to innovative solutions to complex problems. Whether in the context of improving cancer treatments or enhancing particle detection methods, mastering the principles of atomic stopping power is crucial for progress in many scientific and technological domains.

“原子阻止能力”这一概念是指材料减缓带电粒子(如电子或离子)在其内部通过时的能力。这一现象在核物理、放射治疗和材料科学等多个领域至关重要。理解“原子阻止能力”对于优化探测器设计、改善放射治疗安全性以及提高高能应用中使用的材料性能都是必不可少的。当带电粒子进入材料时,它与材料的原子相互作用,在此过程中失去能量。它减速的程度取决于多个因素,包括粒子的类型、能量及其穿越的材料的原子组成。可以使用Bethe-Bloch公式来量化“原子阻止能力”的测量,该公式描述了能量损失如何随入射粒子的动能变化。在实际应用中,例如癌症治疗中的放射治疗,理解“原子阻止能力”使医学物理学家能够计算出针对肿瘤所需的最佳放射剂量,同时最小化对周围健康组织的损害。通过选择具有适当“原子阻止能力”的材料,他们可以确保最大限度地将能量沉积在肿瘤部位,从而提高治疗效果并减少副作用。在核物理实验中,研究人员常常需要检测和测量高能碰撞中产生的粒子的特性。探测器材料的“原子阻止能力”在决定这些粒子能否有效识别和分析方面发挥了重要作用。通过选择具有高“原子阻止能力”的材料,科学家们可以增强捕捉和研究稀有粒子相互作用的能力。此外,在材料科学中,“原子阻止能力”的概念对于开发能够承受极端条件的新材料至关重要,例如核反应堆或太空环境中。工程师和科学家们致力于创造具有强度和“原子阻止能力”之间适当平衡的材料,以保护敏感设备免受辐射损害。总体而言,“原子阻止能力”的重要性超越了理论物理;它在医疗、研究和工程等领域具有现实意义。随着技术的进步,我们对“原子阻止能力”的理解将不断发展,推动复杂问题的创新解决方案。无论是在改善癌症治疗还是增强粒子检测方法的背景下,掌握“原子阻止能力”的原则对于许多科学和技术领域的进步至关重要。

相关单词

atomic

atomic详解:怎么读、什么意思、用法

stopping

stopping详解:怎么读、什么意思、用法