atomic scattering factor
简明释义
原子散射因子
英英释义
例句
1.The atomic scattering factor 原子散射因子 varies with the wavelength of the incident radiation.
原子散射因子 atomic scattering factor 随着入射辐射的波长而变化。
2.The software calculates the atomic scattering factor 原子散射因子 based on the material's atomic composition.
该软件根据材料的原子组成计算 原子散射因子 atomic scattering factor 。
3.In order to improve accuracy, we need to account for the atomic scattering factors 原子散射因子 of all elements present.
为了提高准确性,我们需要考虑所有存在元素的 原子散射因子 atomic scattering factors 。
4.Researchers often refer to tables of atomic scattering factors 原子散射因子 when analyzing X-ray diffraction patterns.
研究人员在分析X射线衍射图案时,通常会参考 原子散射因子 atomic scattering factors 的表格。
5.The calculation of the atomic scattering factor 原子散射因子 is crucial for determining the electron density in a crystal structure.
计算 原子散射因子 atomic scattering factor 对于确定晶体结构中的电子密度至关重要。
作文
The study of materials at the atomic level has always fascinated scientists, particularly in the fields of physics and chemistry. One crucial aspect of this study is the concept of the atomic scattering factor, which plays a significant role in understanding how X-rays and neutrons interact with matter. The atomic scattering factor refers to a measure of how effectively an atom can scatter incident radiation, such as X-rays or neutrons. This factor is essential for analyzing the structure of materials at the atomic scale, providing insights into their properties and behaviors.When X-rays are directed at a material, they interact with the electrons surrounding the atoms. The intensity and pattern of the scattered X-rays can reveal important information about the arrangement of atoms within the material. The atomic scattering factor quantifies this interaction, taking into account the atomic number of the element and the wavelength of the incoming radiation. Higher atomic numbers typically lead to larger scattering factors, meaning that heavier elements scatter X-rays more effectively than lighter ones.In practical applications, the atomic scattering factor is used in various techniques such as X-ray diffraction and neutron scattering. These methods allow scientists to determine the crystal structures of materials, which is fundamental in fields like solid-state physics, materials science, and even biology. For instance, understanding the crystal structure of proteins can aid in drug design and development, highlighting the importance of the atomic scattering factor in biochemistry.Moreover, the atomic scattering factor is not a constant value; it varies with the angle of scattering and the energy of the incoming radiation. This variability means that researchers must carefully consider the conditions under which they are measuring scattering to obtain accurate results. By analyzing the data collected from scattering experiments, scientists can refine their models of atomic interactions and improve their understanding of material properties.In summary, the atomic scattering factor is a vital component in the field of material science, enabling researchers to probe the atomic structure of substances. Its significance extends beyond simple measurements; it is integral to developing new materials and technologies. As we continue to explore the atomic world, the atomic scattering factor will undoubtedly remain a key focus of scientific inquiry, helping to unlock the mysteries of matter at its most fundamental level. Ultimately, mastering the concept of the atomic scattering factor not only enhances our understanding of physical sciences but also paves the way for innovations that can impact various industries, from healthcare to engineering.
材料在原子层面的研究一直吸引着科学家,尤其是在物理和化学领域。这项研究的一个关键方面是“原子散射因子”的概念,它在理解X射线和中子如何与物质相互作用方面发挥着重要作用。“原子散射因子”是指一个原子如何有效散射入射辐射(如X射线或中子)的量度。这个因子对于分析材料在原子尺度上的结构至关重要,提供了对其性质和行为的深入洞察。当X射线照射到材料上时,它们会与原子周围的电子相互作用。散射X射线的强度和模式可以揭示材料内部原子排列的重要信息。“原子散射因子”量化了这种相互作用,考虑了元素的原子序数和入射辐射的波长。较高的原子序数通常会导致更大的散射因子,这意味着较重的元素比较轻的元素更有效地散射X射线。在实际应用中,“原子散射因子”被用于各种技术,如X射线衍射和中子散射。这些方法使科学家能够确定材料的晶体结构,这在固态物理、材料科学甚至生物学等领域是基础性的。例如,了解蛋白质的晶体结构可以帮助药物设计和开发,突显了“原子散射因子”在生物化学中的重要性。此外,“原子散射因子”并不是一个常量;它随着散射角度和入射辐射的能量而变化。这种变化意味着研究人员必须仔细考虑他们测量散射的条件,以获得准确的结果。通过分析从散射实验中收集的数据,科学家可以完善他们的原子相互作用模型,并提高对材料性质的理解。总之,“原子散射因子”是材料科学领域的重要组成部分,使研究人员能够探测物质的原子结构。它的重要性超越了简单的测量;它对新材料和技术的发展至关重要。随着我们继续探索原子世界,“原子散射因子”无疑将始终是科学研究的重点,有助于揭开物质在最基本层面的奥秘。最终,掌握“原子散射因子”的概念不仅增强了我们对物理科学的理解,还为可能影响各个行业的创新铺平了道路,从医疗保健到工程。
相关单词