atomic scattering coefficient

简明释义

原子散射系数

英英释义

The atomic scattering coefficient is a measure of the probability of scattering of photons or particles by an atom, typically expressed in terms of the number of scattering events per unit path length per atom.

原子散射系数是衡量光子或粒子与原子散射概率的一个指标,通常以每单位路径长度每个原子的散射事件数量来表示。

例句

1.The atomic scattering coefficient 原子散射系数 can vary significantly between different materials.

不同材料之间的原子散射系数 atomic scattering coefficient 可能会有显著差异。

2.The atomic scattering coefficient 原子散射系数 is crucial for understanding how materials interact with radiation.

了解材料如何与辐射相互作用时,原子散射系数 atomic scattering coefficient 是至关重要的。

3.Calculating the atomic scattering coefficient 原子散射系数 is essential for accurate simulations in physics.

在物理学中,计算原子散射系数 atomic scattering coefficient 对于准确的模拟是必不可少的。

4.In X-ray imaging, the atomic scattering coefficient 原子散射系数 affects the contrast of the images.

在X射线成像中,原子散射系数 atomic scattering coefficient 影响图像的对比度。

5.Researchers measured the atomic scattering coefficient 原子散射系数 of various elements to improve their models.

研究人员测量了各种元素的原子散射系数 atomic scattering coefficient 以改进他们的模型。

作文

The concept of atomic scattering coefficient is crucial in the field of physics and materials science, particularly when studying how particles interact with matter. The atomic scattering coefficient refers to a measure that quantifies the likelihood of a particle being scattered by an atom within a material. This coefficient plays a significant role in various applications, including nuclear physics, radiation therapy, and even in the development of new materials. To understand the atomic scattering coefficient, one must first grasp the principles of scattering. When a beam of particles, such as photons or neutrons, passes through a material, it interacts with the atoms in that material. Depending on the energy of the incoming particles and the atomic structure of the material, some particles will be absorbed, while others will be deflected at different angles. The atomic scattering coefficient provides a quantitative measure of this deflection, helping scientists predict how many particles will continue through the material without interaction and how many will be scattered.The significance of the atomic scattering coefficient extends beyond theoretical studies. In practical applications, such as radiation therapy for cancer treatment, understanding how radiation scatters as it passes through human tissue is vital. Medical physicists use the atomic scattering coefficient to calculate the optimal dose of radiation needed to target tumors effectively while minimizing damage to surrounding healthy tissues. This careful balancing act relies heavily on accurate measurements of the atomic scattering coefficient for different types of tissues and tumors.Moreover, the atomic scattering coefficient is also essential in the field of materials science. Researchers often investigate how materials interact with various forms of radiation to develop new technologies, such as advanced imaging systems or radiation shielding materials. By knowing the atomic scattering coefficient of a given material, scientists can design substances that either maximize or minimize scattering effects, depending on their intended use. For example, in the development of new semiconductor materials, understanding how electrons scatter within the material can lead to better performance and efficiency in electronic devices.In addition to its applications in medicine and materials science, the atomic scattering coefficient also has implications in environmental science. For instance, studying how pollutants disperse in the atmosphere or how radioactive materials behave in the environment can benefit from a solid understanding of atomic scattering. By analyzing the atomic scattering coefficient of various atmospheric components, researchers can model the transport and fate of these substances, leading to better environmental management strategies.In conclusion, the atomic scattering coefficient is a fundamental parameter that aids in our understanding of particle interactions with matter across several scientific disciplines. From medical applications in radiation therapy to advancements in materials science and environmental studies, the implications of the atomic scattering coefficient are vast and varied. As research continues to evolve, the importance of accurately measuring and applying the atomic scattering coefficient will undoubtedly grow, paving the way for innovative solutions to complex problems in science and technology.

“原子散射系数”这一概念在物理学和材料科学领域至关重要,特别是在研究粒子如何与物质相互作用时。“原子散射系数”是指量化粒子在材料中被原子散射的可能性的指标。该系数在核物理、放射治疗甚至新材料开发等多种应用中发挥着重要作用。要理解“原子散射系数”,首先必须掌握散射的原理。当一束粒子(如光子或中子)穿过某种材料时,它会与该材料中的原子相互作用。根据入射粒子的能量和材料的原子结构,一些粒子将被吸收,而其他粒子则会以不同的角度被偏转。“原子散射系数”提供了这种偏转的定量测量,帮助科学家预测多少粒子将继续穿过材料而不发生相互作用,多少粒子将被散射。“原子散射系数”的重要性不仅限于理论研究。在实际应用中,例如癌症治疗中的放射治疗,了解辐射在通过人体组织时的散射情况至关重要。医学物理学家使用“原子散射系数”来计算针对肿瘤所需的最佳辐射剂量,同时尽量减少对周围健康组织的损害。这种微妙的平衡依赖于对不同类型组织和肿瘤的“原子散射系数”的准确测量。此外,“原子散射系数”在材料科学领域也至关重要。研究人员经常研究材料如何与各种形式的辐射相互作用,以开发新技术,如先进的成像系统或辐射屏蔽材料。通过了解给定材料的“原子散射系数”,科学家可以设计出最大化或最小化散射效应的物质,具体取决于其预期用途。例如,在新半导体材料的开发中,了解电子在材料内的散射情况可以提高电子设备的性能和效率。除了在医学和材料科学中的应用外,“原子散射系数”在环境科学中也有重要意义。例如,研究污染物在大气中的扩散或放射性物质在环境中的行为,都可以从对原子散射的深入理解中受益。通过分析各种大气成分的“原子散射系数”,研究人员可以模拟这些物质的运输和命运,从而制定更好的环境管理策略。总之,“原子散射系数”是一个基本参数,有助于我们理解各个科学学科中粒子与物质的相互作用。从医学中的放射治疗到材料科学和环境研究的进展,“原子散射系数”的影响范围广泛且多样。随着研究的不断发展,准确测量和应用“原子散射系数”的重要性无疑会增加,为科学和技术中的复杂问题提供创新解决方案。

相关单词

atomic

atomic详解:怎么读、什么意思、用法

scattering

scattering详解:怎么读、什么意思、用法