atomic scale
简明释义
原子标度
英英释义
例句
1.Researchers are studying the atomic scale 原子级别 interactions of proteins to understand their functions.
研究人员正在研究蛋白质在原子级别 atomic scale的相互作用,以理解其功能。
2.Scientists are able to manipulate materials at the atomic scale 原子级别 to create new compounds.
科学家能够在原子级别 atomic scale操控材料,以创造新化合物。
3.The properties of materials can change dramatically when observed at the atomic scale 原子级别.
当材料在原子级别 atomic scale观察时,其特性可能会发生显著变化。
4.Understanding reactions at the atomic scale 原子级别 is crucial for developing better catalysts.
理解在原子级别 atomic scale的反应对开发更好的催化剂至关重要。
5.Nanotechnology operates at the atomic scale 原子级别, enabling advancements in medicine and electronics.
纳米技术在原子级别 atomic scale运作,使医学和电子产品取得进展。
作文
The concept of the atomic scale refers to the dimensions and structures at the level of atoms and molecules. Understanding phenomena at this scale is crucial for various fields, including chemistry, physics, and material science. At the atomic scale, we can observe how atoms interact with one another, forming bonds that create the substances we encounter in our everyday lives. For instance, the properties of materials such as metals, plastics, and ceramics are determined by their atomic structure. One of the most fascinating aspects of studying the atomic scale is the realization that the behavior of matter can drastically change when we look at it from this perspective. For example, gold is a metal that appears shiny and solid at a macroscopic level, but when we examine it at the atomic scale, we discover that it consists of a lattice of atoms held together by metallic bonds. This atomic arrangement not only gives gold its characteristic color but also influences its conductivity and malleability. Moreover, the atomic scale is essential for understanding chemical reactions. When substances react, their atoms rearrange, forming new compounds. This process is governed by the laws of quantum mechanics, which describe the behavior of particles at the atomic scale. For instance, during combustion, the carbon atoms in fuel combine with oxygen atoms, resulting in the formation of carbon dioxide and water. The energy released during this reaction is what powers engines and heats our homes. In recent years, advancements in technology have allowed scientists to manipulate materials at the atomic scale. Techniques such as scanning tunneling microscopy (STM) and atomic force microscopy (AFM) enable researchers to visualize and even move individual atoms. This capability opens up new possibilities for creating materials with tailored properties, leading to innovations in nanotechnology, electronics, and medicine. For example, researchers are exploring the use of nanoparticles in drug delivery systems, where tiny carriers can transport medications directly to targeted cells, minimizing side effects and improving treatment efficacy. Furthermore, the implications of understanding the atomic scale extend beyond practical applications. It challenges our philosophical perspectives on the nature of reality. As we delve into the realm of the atomic scale, we confront questions about the fundamental building blocks of matter and the forces that govern their interactions. This exploration invites us to reconsider our understanding of existence itself, as everything around us is ultimately composed of these invisible atoms. In conclusion, the atomic scale is a critical domain of study that reveals the intricate workings of the universe. From explaining the properties of materials to guiding technological advancements, the knowledge gained from examining the atomic scale has profound implications for science and society. As we continue to explore this microscopic world, we unlock new potentials that can transform our lives and deepen our understanding of the cosmos. The exploration of the atomic scale not only enhances our scientific knowledge but also inspires future generations to pursue careers in STEM fields, ensuring that the quest for knowledge continues to thrive. By fostering curiosity and innovation, we can harness the power of the atomic scale to address some of the most pressing challenges facing humanity today.
“原子尺度”这一概念指的是在原子和分子层面上的维度和结构。在化学、物理学和材料科学等多个领域,理解这一尺度上的现象至关重要。在“原子尺度”上,我们可以观察到原子之间的相互作用,形成构成我们日常生活中物质的键合。例如,金属、塑料和陶瓷等材料的特性是由它们的原子结构决定的。 研究“原子尺度”的一个最迷人的方面是,当我们从这个角度看待物质时,物质的行为可能会发生巨大的变化。例如,黄金是一种在宏观层面上看起来闪亮而坚固的金属,但当我们在“原子尺度”上检查它时,我们发现它由一系列原子组成,这些原子通过金属键结合在一起。这种原子排列不仅赋予了黄金其特有的颜色,还影响了其导电性和延展性。 此外,“原子尺度”对于理解化学反应至关重要。当物质发生反应时,它们的原子重新排列,形成新的化合物。这个过程受量子力学法则的支配,量子力学描述了粒子在“原子尺度”上的行为。例如,在燃烧过程中,燃料中的碳原子与氧原子结合,产生二氧化碳和水。反应释放的能量就是推动发动机和加热我们家庭的动力。 近年来,技术的进步使科学家能够在“原子尺度”上操纵材料。扫描隧道显微镜(STM)和原子力显微镜(AFM)等技术使研究人员能够可视化甚至移动单个原子。这种能力为创造具有定制特性的材料开辟了新可能性,导致纳米技术、电子学和医学的创新。例如,研究人员正在探索在药物递送系统中使用纳米颗粒,其中微小的载体可以将药物直接运输到目标细胞,从而最小化副作用并提高治疗效果。 此外,理解“原子尺度”的意义超出了实际应用。它挑战了我们对现实本质的哲学视角。当我们深入“原子尺度”的领域时,我们面临着关于物质基本构建块及其相互作用力的问题。这种探索邀请我们重新思考对存在本身的理解,因为我们周围的一切最终都是由这些不可见的原子组成的。 总之,“原子尺度”是一个关键的研究领域,揭示了宇宙的复杂运作。从解释材料的特性到指导技术进步,从研究“原子尺度”获得的知识对科学和社会有深远的影响。随着我们继续探索这个微观世界,我们解锁了可以改变我们生活的新潜力,并加深了我们对宇宙的理解。 对“原子尺度”的探索不仅增强了我们的科学知识,还激励未来几代人追求STEM领域的职业,确保对知识的追求继续蓬勃发展。通过培养好奇心和创新精神,我们可以利用“原子尺度”的力量来应对当今人类面临的一些最紧迫的挑战。
相关单词