atomic orbital

简明释义

原子轨函数

英英释义

An atomic orbital is a mathematical function that describes the wave-like behavior of electrons in an atom, representing regions in space where there is a high probability of finding an electron.

原子轨道是一个数学函数,用于描述原子中电子的波动行为,表示在空间中找到电子的高概率区域。

例句

1.In chemistry, understanding atomic orbitals 原子轨道 is crucial for explaining molecular shapes.

在化学中,理解原子轨道对于解释分子形状至关重要。

2.The atomic orbitals 原子轨道 can be classified into s, p, d, and f types.

可以将原子轨道分类为 s、p、d 和 f 类型。

3.Electrons occupy the lowest energy atomic orbital 原子轨道 first according to the Aufbau principle.

根据 Aufbau 原则,电子首先占据最低能量的原子轨道

4.Each atomic orbital 原子轨道 can hold a maximum of two electrons with opposite spins.

每个原子轨道最多可以容纳两个自旋相反的电子。

5.The shape of an atomic orbital 原子轨道 can help predict the bonding behavior of an atom.

一个原子轨道的形状可以帮助预测一个原子的结合行为。

作文

In the realm of quantum chemistry, the concept of an atomic orbital plays a crucial role in understanding how electrons are arranged around the nucleus of an atom. An atomic orbital is a mathematical function that describes the wave-like behavior of an electron in an atom. This concept is fundamental to the field of chemistry because it helps explain the distribution of electrons and their energy levels within an atom.To grasp the significance of atomic orbitals, one must first understand the structure of an atom. Atoms consist of a nucleus made up of protons and neutrons, with electrons orbiting around this nucleus. Unlike the classical idea of electrons traveling in fixed paths, quantum mechanics introduces the notion that electrons exist in regions of probability known as atomic orbitals. These orbitals represent areas where there is a high likelihood of finding an electron at any given time.There are several types of atomic orbitals, each characterized by its shape and energy level. The most common types include s, p, d, and f orbitals. The s orbitals are spherical, while p orbitals have a dumbbell shape, and d and f orbitals are more complex in form. Each type of atomic orbital can hold a specific number of electrons: s orbitals can hold up to 2 electrons, p orbitals can accommodate 6, d orbitals can contain 10, and f orbitals can hold 14 electrons. This capacity is essential for understanding the electronic configuration of elements, which in turn influences their chemical properties and reactivity.The arrangement of electrons in atomic orbitals follows a specific order defined by the Aufbau principle, Hund's rule, and the Pauli exclusion principle. The Aufbau principle states that electrons occupy the lowest energy orbitals first before filling higher ones. Hund's rule indicates that electrons will fill degenerate orbitals singly before pairing up, and the Pauli exclusion principle asserts that no two electrons can have the same set of quantum numbers. Together, these principles guide how atoms interact during chemical reactions, forming bonds and creating molecules.Understanding atomic orbitals is also vital for visualizing molecular geometry and bonding. When atoms bond to form molecules, their atomic orbitals can overlap, allowing electrons to be shared or transferred between them. This overlap leads to the formation of molecular orbitals, which are critical for determining the shape and polarity of molecules. For instance, when two hydrogen atoms bond with an oxygen atom to form water, the overlapping of their atomic orbitals creates a bent molecular shape that has profound implications for the properties of water, such as its high boiling point and solvent capabilities.In conclusion, the concept of an atomic orbital is foundational to our understanding of atomic structure and chemical behavior. By recognizing that electrons do not travel in fixed paths but rather exist in probabilistic regions, we can better grasp the complexities of chemical bonding and molecular formation. The study of atomic orbitals not only enriches our knowledge of chemistry but also enhances our appreciation for the intricate dance of particles that makes up the matter around us.

在量子化学领域,原子轨道的概念在理解电子如何围绕原子核排列中起着至关重要的作用。原子轨道是一个数学函数,用于描述原子中电子的波动行为。这个概念是化学领域的基础,因为它帮助解释电子在原子内的分布及其能级。要理解原子轨道的重要性,首先必须了解原子的结构。原子由一个由质子和中子组成的原子核以及环绕其周围的电子构成。与经典观点认为电子在固定路径上运动不同,量子力学引入了电子存在于概率区域的概念,这些区域被称为原子轨道。这些轨道代表了在任何给定时间找到电子的高可能性区域。有几种类型的原子轨道,每种类型都有其特征的形状和能量水平。最常见的类型包括s、p、d和f轨道。s轨道是球形的,而p轨道呈哑铃形,d和f轨道则形状更复杂。每种类型的原子轨道可以容纳特定数量的电子:s轨道最多可以容纳2个电子,p轨道可以容纳6个,d轨道可以容纳10个,f轨道可以容纳14个电子。这种容量对于理解元素的电子配置至关重要,而电子配置又影响它们的化学性质和反应性。电子在原子轨道中的排列遵循特定的顺序,这一顺序由 Aufbau 原则、洪德规则和泡利不相容原理定义。Aufbau原则指出,电子首先占据能量最低的轨道,然后再填充更高的轨道。洪德规则表明,电子会先单独填充简并轨道,然后再配对,而泡利不相容原理则断言,两个电子不能具有相同的一组量子数。这些原则共同指导着原子在化学反应中的相互作用,形成键并创建分子。理解原子轨道对于可视化分子几何形状和键合也至关重要。当原子结合形成分子时,它们的原子轨道可以重叠,从而允许电子在它们之间共享或转移。这种重叠导致分子轨道的形成,这对于确定分子的形状和极性至关重要。例如,当两个氢原子与一个氧原子结合形成水时,它们的原子轨道的重叠创造出一种弯曲的分子形状,这对水的性质(如高沸点和溶剂能力)有深远的影响。总之,原子轨道的概念是我们理解原子结构和化学行为的基础。通过认识到电子不是在固定路径中运动,而是存在于概率区域中,我们可以更好地掌握化学键合和分子形成的复杂性。对原子轨道的研究不仅丰富了我们对化学的知识,也增强了我们对构成周围物质的粒子复杂舞蹈的欣赏。

相关单词

atomic

atomic详解:怎么读、什么意思、用法

orbital

orbital详解:怎么读、什么意思、用法