artificial radioactive isotope
简明释义
人造放射性同位素
英英释义
例句
1.During the experiment, the team measured the decay rate of the artificial radioactive isotope 人工放射性同位素 they produced.
在实验过程中,团队测量了他们生产的人工放射性同位素的衰变速率。
2.The artificial radioactive isotope 人工放射性同位素 has a half-life of only a few hours, making it suitable for short-term applications.
该人工放射性同位素的半衰期仅为几个小时,适合短期应用。
3.The production of artificial radioactive isotope 人工放射性同位素 is essential for medical imaging techniques.
人工放射性同位素的生产对于医学成像技术至关重要。
4.Researchers are developing new methods to create artificial radioactive isotope 人工放射性同位素 for cancer treatment.
研究人员正在开发新方法来生产用于癌症治疗的人工放射性同位素。
5.The artificial radioactive isotope 人工放射性同位素 used in PET scans helps doctors diagnose diseases more accurately.
在PET扫描中使用的人工放射性同位素帮助医生更准确地诊断疾病。
作文
In the field of nuclear science, the term artificial radioactive isotope refers to isotopes that are not found naturally in significant amounts but are instead created through nuclear reactions. These isotopes have unique properties that make them valuable for a variety of applications, including medical treatments, scientific research, and industrial processes. Understanding the significance of artificial radioactive isotopes is crucial for appreciating their role in modern technology and medicine.The creation of artificial radioactive isotopes typically involves bombarding stable isotopes with neutrons or other particles in a nuclear reactor or particle accelerator. This process alters the atomic structure of the original isotope, resulting in a new isotope that has different nuclear properties, including radioactivity. One of the most well-known examples of an artificial radioactive isotope is Carbon-14, which is produced when nitrogen-14 is bombarded with neutrons. Carbon-14 is widely used in radiocarbon dating, a method that allows scientists to determine the age of ancient organic materials.Another important application of artificial radioactive isotopes is in the field of medicine. For instance, isotopes like Technetium-99m are used in diagnostic imaging procedures, such as single-photon emission computed tomography (SPECT) scans. These isotopes emit gamma rays that can be detected by specialized cameras, allowing doctors to visualize internal organs and identify potential health issues. The ability to create and utilize artificial radioactive isotopes in medicine has revolutionized how we diagnose and treat various diseases, making it an indispensable tool in modern healthcare.In addition to medical applications, artificial radioactive isotopes play a significant role in scientific research. They are often used as tracers in biochemical and physiological studies, helping researchers understand complex biological processes. For example, scientists may use isotopes to trace the movement of nutrients in plants or to study metabolic pathways in living organisms. The ability to track these processes at a molecular level has led to significant advancements in our understanding of biology and chemistry.Moreover, artificial radioactive isotopes have industrial applications as well. They are utilized in quality control processes, such as gauging the thickness of materials or detecting leaks in pipelines. The precise measurements made possible by these isotopes help ensure the safety and reliability of various products and infrastructure.However, the use of artificial radioactive isotopes also raises important safety and ethical considerations. The handling and disposal of radioactive materials must be conducted with extreme care to prevent environmental contamination and protect public health. Regulatory agencies impose strict guidelines to ensure that these substances are used safely and responsibly. Additionally, the potential for misuse of radioactive materials in malicious ways has prompted discussions about security measures and international regulations.In conclusion, artificial radioactive isotopes are a fascinating aspect of nuclear science with far-reaching implications in medicine, research, and industry. Their ability to provide insights into biological processes, enhance diagnostic techniques, and improve product quality makes them invaluable tools in our modern world. As we continue to explore the potential of these isotopes, it is essential to balance their benefits with the necessary precautions to ensure safety and ethical use. Understanding the concept of artificial radioactive isotopes not only enriches our knowledge of science but also highlights the importance of responsible innovation in technology and healthcare.
在核科学领域,术语人工放射性同位素指的是那些在自然界中并没有显著存在,而是通过核反应创造的同位素。这些同位素具有独特的属性,使它们在医疗治疗、科学研究和工业过程等多种应用中极具价值。了解人工放射性同位素的重要性对于欣赏它们在现代技术和医学中的作用至关重要。人工放射性同位素的创造通常涉及在核反应堆或粒子加速器中用中子或其他粒子轰击稳定同位素。这一过程改变了原始同位素的原子结构,产生了一种具有不同核特性的新的同位素,包括放射性。一个最知名的人工放射性同位素的例子是碳-14,它是在氮-14被中子轰击时产生的。碳-14广泛用于放射性碳定年法,这是一种允许科学家确定古代有机材料年龄的方法。人工放射性同位素在医学领域的另一个重要应用是。例如,锝-99m同位素用于诊断成像程序,如单光子发射计算机断层扫描(SPECT)扫描。这些同位素发出伽马射线,可以被专门的相机检测,从而使医生能够可视化内部器官并识别潜在的健康问题。在医学中创造和利用人工放射性同位素的能力彻底改变了我们诊断和治疗各种疾病的方式,使其成为现代医疗中不可或缺的工具。除了医学应用外,人工放射性同位素在科学研究中也发挥着重要作用。它们常常作为生化和生理研究中的示踪剂,帮助研究人员理解复杂的生物过程。例如,科学家可能使用同位素来追踪植物中的营养物质运动或研究活生物体中的代谢途径。在分子水平上跟踪这些过程的能力使我们对生物学和化学的理解取得了重大进展。此外,人工放射性同位素在工业应用中也有重要作用。它们被用于质量控制过程,例如测量材料的厚度或检测管道中的泄漏。这些同位素所提供的精确测量有助于确保各种产品和基础设施的安全性和可靠性。然而,使用人工放射性同位素也引发了重要的安全和伦理考虑。处理和处置放射性材料必须非常小心,以防止环境污染和保护公众健康。监管机构对这些物质的使用施加严格的指导方针,以确保安全和负责任地使用。此外,放射性材料在恶意用途上的潜在滥用引发了关于安全措施和国际法规的讨论。总之,人工放射性同位素是核科学中一个迷人的方面,对医学、研究和工业都有深远的影响。它们提供的生物过程洞察力、增强的诊断技术和改善的产品质量使其成为我们现代世界中不可或缺的工具。随着我们继续探索这些同位素的潜力,平衡它们的益处与必要的预防措施以确保安全和伦理使用至关重要。理解人工放射性同位素的概念不仅丰富了我们对科学的知识,也强调了在技术和医疗领域负责任创新的重要性。
相关单词