admissible error

简明释义

容许误差

英英释义

An admissible error refers to a permissible or acceptable level of error in a measurement or calculation, which does not invalidate the results or conclusions drawn from it.

可接受误差是指在测量或计算中允许的或可接受的误差水平,这种误差不会使得得出的结果或结论无效。

例句

1.In statistical analysis, an admissible error is often considered acceptable when it falls within the predefined limits.

在统计分析中,可接受误差通常被认为是可以接受的,当它在预定义的范围内时。

2.During the quality control process, any admissible error must be documented to ensure compliance with industry standards.

在质量控制过程中,任何可接受误差都必须记录,以确保遵守行业标准。

3.Engineers must account for admissible error when designing precision instruments.

工程师在设计精密仪器时必须考虑可接受误差

4.The admissible error in this experiment is set at 5%, which allows for some variability in the results.

本实验中的可接受误差设定为5%,这允许结果有一定的变动。

5.In legal contexts, an admissible error may refer to minor discrepancies that do not affect the outcome of a case.

在法律背景下,可接受误差可能指的是不影响案件结果的小差异。

作文

In the realm of science and engineering, precision is paramount. However, it is essential to recognize that no measurement or calculation is devoid of errors. This brings us to the concept of admissible error, which refers to the maximum allowable error in a measurement or calculation that still ensures the validity of the results. Understanding this concept is crucial for researchers and professionals who rely on accurate data to make informed decisions.When conducting experiments or analyzing data, scientists often encounter various sources of error. These can stem from the instruments used, environmental conditions, or even human factors. While striving for absolute accuracy is admirable, it is not always feasible. Therefore, establishing an admissible error threshold allows researchers to determine the acceptable limits within which their results can be considered reliable.For instance, in the field of physics, when measuring the speed of light, scientists must account for potential inaccuracies in their instruments. If the admissible error is set at a certain percentage, any measurement falling within this range can still be deemed valid. This approach not only enhances the credibility of the findings but also provides a framework for evaluating the quality of the data collected.Moreover, the concept of admissible error extends beyond scientific measurements. In everyday life, we encounter situations where some degree of error is acceptable. For example, when cooking, a recipe may call for a specific amount of an ingredient, but a slight deviation may not significantly affect the final dish. Here, the admissible error allows for flexibility while still achieving satisfactory results.In engineering, particularly in construction, understanding admissible error is vital for ensuring safety and functionality. When designing structures, engineers must adhere to strict guidelines regarding tolerances. These tolerances represent the admissible error in dimensions and materials, ensuring that even with minor deviations, the integrity of the structure remains intact. Failure to respect these limits can lead to catastrophic consequences, highlighting the importance of this concept in practical applications.Furthermore, in statistical analysis, the notion of admissible error plays a critical role in hypothesis testing. Researchers must establish a significance level, which determines the likelihood of making a Type I error. By defining this threshold, they can accept a certain level of risk while still drawing meaningful conclusions from their data. This balance between accuracy and practicality is a hallmark of scientific inquiry.In conclusion, the concept of admissible error serves as a guiding principle in various fields, emphasizing the importance of understanding and accepting the limitations of measurement and analysis. By recognizing that perfection is unattainable, we can focus on obtaining results that are sufficiently accurate for our purposes. Whether in science, engineering, or daily life, acknowledging admissible error enables us to navigate uncertainties and make informed decisions based on reliable data.

在科学和工程领域,精确度至关重要。然而,必须认识到,没有任何测量或计算是没有误差的。这就引出了“可接受误差”的概念,它指的是在测量或计算中仍然确保结果有效的最大允许误差。理解这一概念对于依赖准确数据做出明智决策的研究人员和专业人士至关重要。在进行实验或分析数据时,科学家们经常会遇到各种误差来源。这些误差可能来源于使用的仪器、环境条件,甚至是人为因素。虽然追求绝对准确性是值得赞赏的,但并不总是可行的。因此,建立一个可接受误差阈值使研究人员能够确定其结果可以被视为可靠的可接受范围。例如,在物理学领域,当测量光速时,科学家必须考虑仪器潜在的不准确性。如果可接受误差设定在某个百分比内,则任何落在此范围内的测量仍然可以被视为有效。这种方法不仅增强了研究结果的可信度,还为评估所收集数据的质量提供了框架。此外,可接受误差的概念超越了科学测量。在日常生活中,我们遇到了一些程度的误差是可以接受的情况。例如,在烹饪时,食谱可能要求特定数量的成分,但稍微偏离可能不会显著影响最终的菜肴。在这里,可接受误差允许灵活性,同时仍能达到令人满意的结果。在工程领域,特别是在建筑中,理解可接受误差对于确保安全和功能至关重要。在设计结构时,工程师必须遵循关于公差的严格指南。这些公差代表了尺寸和材料的可接受误差,确保即使有轻微偏差,结构的完整性依然保持完好。不尊重这些限制可能导致灾难性的后果,这突显了这一概念在实际应用中的重要性。此外,在统计分析中,可接受误差的概念在假设检验中发挥着关键作用。研究人员必须建立显著性水平,这决定了犯第一类错误的可能性。通过定义这一阈值,他们可以在得出有意义的结论的同时接受一定程度的风险。这种在准确性和实用性之间的平衡是科学探究的一个标志。总之,可接受误差的概念作为各个领域的指导原则,强调了理解和接受测量和分析局限性的重要性。通过认识到完美是无法实现的,我们可以专注于获得足够准确的结果,以满足我们的目的。无论是在科学、工程还是日常生活中,承认可接受误差使我们能够应对不确定性,并基于可靠的数据做出明智的决策。

相关单词

admissible

admissible详解:怎么读、什么意思、用法