adjoint flux
简明释义
伴随中子通量
英英释义
例句
1.The adjoint flux 伴随通量 provides valuable information for sensitivity analysis in nuclear systems.
在核系统的灵敏度分析中,adjoint flux 伴随通量 提供了宝贵的信息。
2.In the context of neutron transport theory, the calculation of adjoint flux 伴随通量 is crucial for understanding the behavior of neutrons in a reactor.
在中子输运理论中,计算adjoint flux 伴随通量 对于理解反应堆中中子的行为至关重要。
3.Researchers often employ adjoint flux 伴随通量 methods to enhance the accuracy of their simulations in particle transport problems.
研究人员经常使用adjoint flux 伴随通量 方法来提高粒子输运问题模拟的准确性。
4.By integrating the adjoint flux 伴随通量 over a specified volume, one can determine the contribution to the overall neutron population.
通过对指定体积内的adjoint flux 伴随通量 进行积分,可以确定对整体中子群体的贡献。
5.The adjoint flux 伴随通量 can be used to optimize radiation shielding designs in nuclear engineering.
在核工程中,adjoint flux 伴随通量 可用于优化辐射屏蔽设计。
作文
In the field of physics and engineering, concepts such as flux play a crucial role in understanding various phenomena. One specific term that often arises in advanced studies is adjoint flux. The term 'flux' generally refers to the flow or transfer of a quantity, such as energy or mass, through a surface. In contrast, adjoint flux is a more specialized concept that pertains to the dual or complementary aspects of flux in mathematical formulations, particularly in the context of optimization problems and numerical simulations.To grasp the significance of adjoint flux, it is essential to first understand its relationship with the adjoint state in mathematical modeling. The adjoint state is derived from the original system's governing equations and provides valuable information about how changes in the input parameters affect the output. When we talk about adjoint flux, we are essentially discussing the flow characteristics that result from these adjoint states. This can be particularly useful in scenarios where one needs to optimize a system's performance by adjusting certain variables.For instance, consider a scenario in computational fluid dynamics (CFD), where engineers are tasked with designing an efficient aircraft wing. By employing the concept of adjoint flux, they can analyze how alterations in the wing's shape will impact the airflow around it. The adjoint equations help identify which parts of the wing require modification to minimize drag or maximize lift. Thus, adjoint flux becomes a powerful tool in guiding design decisions and enhancing overall aerodynamic performance.Moreover, adjoint flux is not limited to fluid dynamics; it also finds applications in heat transfer, structural optimization, and even in financial modeling. In each of these fields, the ability to compute the adjoint flux allows researchers and practitioners to efficiently navigate complex systems and derive solutions that would otherwise be unattainable. The adjoint approach significantly reduces the computational cost associated with sensitivity analysis, making it a preferred method in many engineering applications.The mathematical formulation of adjoint flux typically involves the use of Lagrange multipliers or other optimization techniques to ensure that the constraints of the system are met while maximizing or minimizing a particular objective function. This interplay between the primal and adjoint problems is what makes adjoint flux a critical concept in modern computational methods.In conclusion, the term adjoint flux encapsulates a sophisticated but vital aspect of mathematical modeling and optimization in engineering. Its ability to provide insights into the behavior of complex systems makes it invaluable for researchers and practitioners alike. As technology continues to advance, the importance of understanding concepts like adjoint flux will only grow, enabling innovative solutions to emerge across various disciplines. Therefore, mastering this concept is essential for anyone looking to excel in fields that rely heavily on mathematical modeling and simulation.
在物理和工程领域,像通量这样的概念在理解各种现象中起着至关重要的作用。一个经常出现的特定术语是伴随通量。通量一词通常指的是通过表面流动或传递的量,例如能量或质量。相比之下,伴随通量是一个更专业的概念,涉及数学公式中通量的对偶或补充方面,特别是在优化问题和数值模拟的背景下。要理解伴随通量的重要性,首先需要了解其与数学建模中伴随状态的关系。伴随状态是从原始系统的控制方程推导而来的,提供了关于输入参数变化如何影响输出的重要信息。当我们谈论伴随通量时,我们实际上是在讨论这些伴随状态所导致的流动特征。这在需要通过调整某些变量来优化系统性能的场景中特别有用。例如,考虑一个计算流体动力学(CFD)的场景,工程师们的任务是设计一个高效的飞机机翼。通过采用伴随通量的概念,他们可以分析机翼形状的变化将如何影响周围的气流。伴随方程帮助识别机翼的哪些部分需要修改以最小化阻力或最大化升力。因此,伴随通量成为指导设计决策和提高整体空气动力学性能的强大工具。此外,伴随通量不仅限于流体动力学;它还在热传递、结构优化甚至金融建模中发挥作用。在这些领域中,计算伴随通量的能力使研究人员和从业者能够有效地导航复杂系统,并得出否则无法实现的解决方案。伴随方法显著降低了与灵敏度分析相关的计算成本,使其成为许多工程应用中的首选方法。伴随通量的数学公式通常涉及使用拉格朗日乘子或其他优化技术,以确保系统约束得到满足,同时最大化或最小化特定目标函数。原始问题和伴随问题之间的这种相互作用使得伴随通量成为现代计算方法中的关键概念。总之,伴随通量这个术语概括了工程中数学建模和优化的复杂但重要的方面。它能够提供对复杂系统行为的洞察,使其对研究人员和从业者都具有不可或缺的价值。随着技术的不断进步,理解像伴随通量这样的概念的重要性只会增加,从而使创新解决方案在各个学科中涌现。因此,掌握这一概念对于任何希望在依赖数学建模和仿真的领域中脱颖而出的人来说都是至关重要的。
相关单词