adiabatic invariance
简明释义
绝热不变性
英英释义
例句
1.In thermodynamics, adiabatic invariance (绝热不变性) can be observed in processes where no heat is exchanged with the environment.
在热力学中,在没有与环境交换热量的过程中可以观察到 adiabatic invariance (绝热不变性)。
2.The study of adiabatic invariance (绝热不变性) is essential for understanding the stability of orbits in celestial mechanics.
研究 adiabatic invariance (绝热不变性) 对于理解天体力学中轨道的稳定性至关重要。
3.The adiabatic invariance (绝热不变性) principle helps predict the outcome of a system when external parameters are varied gradually.
当外部参数逐渐变化时,adiabatic invariance (绝热不变性) 原则有助于预测系统的结果。
4.In quantum mechanics, the concept of adiabatic invariance (绝热不变性) plays a crucial role in understanding the behavior of systems under slow changes.
在量子力学中,adiabatic invariance (绝热不变性) 的概念在理解系统在缓慢变化下的行为中起着至关重要的作用。
5.In classical mechanics, the conservation of action is an example of adiabatic invariance (绝热不变性).
在经典力学中,作用量的守恒是 adiabatic invariance (绝热不变性) 的一个例子。
作文
In the realm of physics, particularly in classical mechanics and thermodynamics, the concept of adiabatic invariance plays a crucial role in understanding the behavior of systems under certain conditions. The term 'adiabatic' refers to processes that occur without heat transfer into or out of the system, while 'invariance' indicates properties that remain unchanged despite transformations. Together, these terms describe a principle that helps simplify complex physical phenomena. To grasp the significance of adiabatic invariance, one must first consider its implications in the context of dynamical systems. When a system undergoes slow changes, certain quantities can be conserved. For instance, in a Hamiltonian system, the action variable remains constant when the system evolves adiabatically. This means that if we slowly change the parameters of the system, the action associated with it does not vary, even though the state of the system may change significantly. This conservation is vital because it allows physicists to predict the system's behavior over time. For example, in quantum mechanics, the concept of adiabatic invariance is essential in understanding how quantum states evolve. In the adiabatic theorem, it is stated that a quantum system will remain in its instantaneous eigenstate if the Hamiltonian changes slowly enough. This principle has profound implications for various applications, including quantum computing and the manipulation of quantum states.Moreover, the idea of adiabatic invariance is not limited to theoretical physics; it also finds applications in engineering and technology. For instance, in the design of engines and refrigerators, engineers often rely on the principles of adiabatic processes to optimize performance and efficiency. Understanding how energy is conserved during adiabatic transformations allows for better designs that minimize energy loss and maximize output.Furthermore, the concept extends beyond classical systems to encompass a wide range of phenomena in different fields. In celestial mechanics, for instance, the orbits of planets can be analyzed using the principles of adiabatic invariance. As celestial bodies interact gravitationally, their orbits may change, but certain quantities related to their motion can remain invariant over long periods. This insight helps astronomers predict the future positions of celestial objects and understand the dynamics of our solar system.In conclusion, adiabatic invariance is a fundamental concept that bridges various domains of physics and engineering. Its ability to describe the conservation of certain quantities under slow transformations provides valuable insights into the behavior of complex systems. As we continue to explore the intricacies of the universe, the principles of adiabatic invariance will undoubtedly remain a cornerstone of our understanding, guiding both theoretical research and practical applications in technology and beyond.
在物理学的领域,特别是经典力学和热力学中,绝热不变性的概念在理解某些条件下系统的行为方面起着至关重要的作用。‘绝热’一词指的是在没有热量转移进出系统的情况下发生的过程,而‘不变性’则表示在变换过程中保持不变的特性。结合在一起,这些术语描述了一种原理,有助于简化复杂的物理现象。要理解绝热不变性的重要性,首先必须考虑其在动力系统中的意义。当一个系统经历缓慢变化时,某些量可以被守恒。例如,在哈密顿系统中,当系统缓慢演化时,作用量保持不变。这意味着如果我们缓慢改变系统的参数,与之相关的作用量不会变化,即使系统的状态可能发生显著变化。这种守恒是至关重要的,因为它使物理学家能够预测系统随时间的行为。例如,在量子力学中,绝热不变性的概念对于理解量子态的演变至关重要。在绝热定理中,声明如果哈密顿量变化得足够缓慢,量子系统将保持在其瞬时本征态中。这个原理在各种应用中具有深远的影响,包括量子计算和量子态的操控。此外,绝热不变性的思想不仅限于理论物理,它还在工程和技术中找到了应用。例如,在发动机和冰箱的设计中,工程师们经常依赖绝热过程的原理来优化性能和效率。理解在绝热变换过程中能量如何被守恒,可以帮助更好地设计以最小化能量损失并最大化输出。此外,这个概念超越了经典系统,涵盖了不同领域中的各种现象。在天体力学中,例如,行星的轨道可以使用绝热不变性的原理进行分析。当天体之间相互引力作用时,它们的轨道可能会发生变化,但与其运动相关的某些量可以在较长时间内保持不变。这一见解帮助天文学家预测天体的未来位置,并理解我们太阳系的动态。总之,绝热不变性是一个基本概念,连接了物理学和工程的各个领域。它在缓慢变换下描述某些量的守恒的能力,为理解复杂系统的行为提供了宝贵的见解。随着我们继续探索宇宙的复杂性,绝热不变性的原理无疑将继续成为我们理解的基石,引导理论研究和技术及其他领域的实际应用。
相关单词