eigen vibration
简明释义
1. 本征振动; 2. 特征振动;
英英释义
Eigen vibration refers to the natural frequency at which a system or structure tends to oscillate in the absence of any driving force. | 特征振动是指系统或结构在没有任何驱动力的情况下倾向于振荡的自然频率。 |
例句
1.The eigen vibration 特征振动 frequencies of a bridge can be calculated using finite element analysis.
桥梁的eigen vibration 特征振动 频率可以通过有限元分析计算得出。
2.Engineers often perform tests to measure the eigen vibration 特征振动 characteristics of materials used in construction.
工程师通常会进行测试,以测量用于建筑材料的eigen vibration 特征振动 特性。
3.In structural engineering, understanding the eigen vibration 特征振动 modes of a building is crucial for ensuring its stability during earthquakes.
在结构工程中,理解建筑物的eigen vibration 特征振动 模式对于确保其在地震期间的稳定性至关重要。
4.When designing a new vehicle, engineers must consider the eigen vibration 特征振动 modes to enhance comfort and performance.
在设计新车辆时,工程师必须考虑eigen vibration 特征振动 模式,以提高舒适性和性能。
5.The eigen vibration 特征振动 of a mechanical system can indicate potential failure points.
机械系统的eigen vibration 特征振动 可以指示潜在的故障点。
作文
The concept of eigen vibration is fundamental in the field of physics and engineering, particularly when analyzing the vibrational characteristics of structures and mechanical systems. In simple terms, eigen vibration refers to the natural frequencies at which a system tends to oscillate when it is disturbed from its equilibrium position. These vibrations are intrinsic properties of the system, determined by its physical characteristics such as mass, stiffness, and damping. Understanding eigen vibration is crucial for designing stable and resilient structures, as it helps engineers anticipate how these structures will respond to dynamic loads, such as wind or seismic activity.When a structure experiences external forces, it can start to vibrate. However, not all frequencies will cause significant movement; instead, certain frequencies will resonate, leading to amplified oscillations. These specific frequencies are what we refer to as eigen vibrations. For instance, if a building is designed without considering its eigen vibration characteristics, it may resonate with the frequency of an earthquake, potentially leading to catastrophic failure.In practical applications, engineers conduct modal analysis to determine the eigen vibrations of a structure. This involves using mathematical models and simulations to calculate the natural frequencies and corresponding mode shapes. By identifying these parameters, engineers can make informed decisions about materials, shapes, and structural reinforcements. For example, if a bridge's eigen vibration frequency aligns with the frequency of traffic or wind, modifications can be made to mitigate any potential resonance issues.Moreover, eigen vibrations are not limited to large structures. They also play a significant role in smaller mechanical systems, such as machinery and electronic devices. In these cases, understanding the eigen vibrations can help prevent mechanical failures and improve performance. For instance, in the design of a smartphone, engineers must consider the eigen vibrations of its components to ensure that they operate smoothly without unwanted noise or interference.In conclusion, the study of eigen vibration is a vital aspect of engineering and physics, influencing the design and safety of various structures and systems. By understanding how and why these vibrations occur, engineers can create more efficient and resilient designs. As technology continues to advance, the importance of accurately predicting and managing eigen vibrations will only grow, ensuring that our built environment remains safe and functional in the face of dynamic challenges.
“特征振动”这一概念在物理和工程领域中是基础性的,特别是在分析结构和机械系统的振动特性时。简单来说,“特征振动”指的是一个系统在受到扰动时倾向于振荡的自然频率。这些振动是系统的内在属性,由其物理特性(如质量、刚度和阻尼)决定。理解“特征振动”对设计稳定和韧性结构至关重要,因为它帮助工程师预测这些结构在动态载荷(如风或地震活动)下的响应。当结构经历外部力量时,它可能开始振动。然而,并不是所有频率都会引起显著的运动;相反,某些频率会共振,导致振动增强。这些特定频率就是我们所称的“特征振动”。例如,如果一座建筑在设计时没有考虑其“特征振动”特性,它可能会与地震的频率共振,从而可能导致灾难性的失败。在实际应用中,工程师进行模态分析以确定结构的“特征振动”。这涉及使用数学模型和仿真来计算自然频率和相应的模态形状。通过识别这些参数,工程师可以就材料、形状和结构加固做出明智的决策。例如,如果一座桥的“特征振动”频率与交通或风的频率一致,可以进行修改以减轻潜在的共振问题。此外,“特征振动”不仅限于大型结构。在较小的机械系统中,例如机器和电子设备,它们也发挥着重要作用。在这些情况下,理解“特征振动”可以帮助防止机械故障并提高性能。例如,在智能手机的设计中,工程师必须考虑其组件的“特征振动”,以确保它们顺利运行而不会产生不必要的噪音或干扰。总之,“特征振动”的研究是工程和物理学的重要方面,影响着各种结构和系统的设计与安全。通过理解这些振动发生的原因和方式,工程师可以创造出更高效和更具韧性的设计。随着技术的不断进步,准确预测和管理“特征振动”的重要性只会增加,从而确保我们的建筑环境在面对动态挑战时保持安全和功能。
相关单词