irreversible catalysis
简明释义
不可逆催化
英英释义
例句
1.The process of alcohol fermentation is an example of irreversible catalysis, where sugars are converted into ethanol and carbon dioxide, making it 不可逆催化.
酒精发酵的过程是一个不可逆催化的例子,其中糖被转化为乙醇和二氧化碳。
2.In the production of biodiesel, transesterification involves irreversible catalysis to convert triglycerides into fatty acid methyl esters, which is 不可逆催化.
在生物柴油的生产中,酯交换反应涉及不可逆催化,将甘油三酯转化为脂肪酸甲酯。
3.The decomposition of hydrogen peroxide using catalase is a classic example of irreversible catalysis, resulting in water and oxygen, thus it is 不可逆催化.
使用过氧化氢酶分解过氧化氢是不可逆催化的经典例子,产生水和氧气。
4.The conversion of glucose to gluconic acid through glucose oxidase represents irreversible catalysis, as the reaction proceeds in one direction, thus it is 不可逆催化.
通过葡萄糖氧化酶将葡萄糖转化为葡萄糖酸的过程代表了不可逆催化,因为反应只朝一个方向进行。
5.In many enzymatic reactions, irreversible catalysis occurs when the enzyme-substrate complex leads to product formation that cannot revert back to substrates, making it 不可逆催化.
在许多酶促反应中,不可逆催化发生在酶-底物复合物导致产品形成,无法回到底物。
作文
In the realm of chemistry, catalysis plays a pivotal role in enhancing the rate of chemical reactions. Among the various types of catalysis, irreversible catalysis (不可逆催化) stands out due to its unique characteristics and applications. This type of catalysis is defined by the fact that once the reaction occurs, it cannot be reversed, meaning that the products formed are stable and do not revert back to their original reactants under normal conditions. This property makes irreversible catalysis particularly significant in both industrial processes and biological systems.One of the primary advantages of irreversible catalysis is its efficiency in producing desired products without the need for continual input of energy or materials. For example, in the production of certain pharmaceuticals, irreversible catalysts can facilitate reactions that convert simple starting materials into complex molecules with high specificity. This not only saves time but also reduces the cost associated with multiple reaction steps. Furthermore, because the products are stable, the overall yield of the desired compound is often higher compared to reversible reactions where equilibrium can limit product formation.Another important aspect of irreversible catalysis is its role in biological systems. Enzymes, which are biological catalysts, often exhibit irreversible behavior under physiological conditions. For instance, the enzyme chymotrypsin catalyzes the hydrolysis of peptide bonds in proteins, leading to the irreversible breakdown of these macromolecules. This process is crucial for digestion and nutrient absorption in living organisms, demonstrating how irreversible catalysis is essential for life.However, the implications of irreversible catalysis extend beyond mere efficiency and biological necessity. In environmental chemistry, irreversible catalytic processes can be harnessed to mitigate pollution. Catalytic converters in automobiles utilize irreversible reactions to convert harmful gases like carbon monoxide into less harmful substances such as carbon dioxide. This application illustrates how irreversible catalysis can contribute to cleaner air and a healthier environment.Despite its many advantages, irreversible catalysis does have limitations. One challenge is that once a reaction has occurred, it is not possible to recover the original reactants. This irreversibility can be problematic in certain situations, such as when a valuable reactant is consumed in the process. Additionally, the design of effective irreversible catalysts can be complex, requiring extensive research and development to identify suitable materials and conditions that promote the desired reaction while minimizing side reactions.In conclusion, irreversible catalysis (不可逆催化) is a fundamental concept in chemistry that offers numerous benefits in both industrial and biological contexts. Its ability to produce stable products efficiently has made it invaluable in various applications, from drug synthesis to environmental protection. As research continues to advance in this field, we can expect to uncover even more innovative uses for irreversible catalysis, further enhancing its significance in science and technology.
在化学领域,催化作用在提高化学反应速率方面发挥着关键作用。在各种催化类型中,不可逆催化因其独特的特性和应用而脱颖而出。这种类型的催化作用的定义是,一旦反应发生,就无法逆转,这意味着形成的产物是稳定的,并且在正常条件下不会回到其原始反应物。这个特性使得不可逆催化在工业过程和生物系统中尤为重要。不可逆催化的主要优势之一是它在生产所需产品时的高效性,无需持续输入能量或材料。例如,在某些药物的生产中,不可逆催化剂可以促进将简单起始材料转化为复杂分子的反应,具有很高的特异性。这不仅节省了时间,还减少了与多个反应步骤相关的成本。此外,由于产品是稳定的,因此所需化合物的总体产率通常高于可逆反应,因为平衡可能限制产品的形成。不可逆催化的另一个重要方面是它在生物系统中的作用。酶,作为生物催化剂,通常在生理条件下表现出不可逆行为。例如,酶胰蛋白酶催化蛋白质中肽键的水解,导致这些大分子的不可逆分解。这个过程对消化和营养吸收至关重要,展示了不可逆催化对生命的必要性。然而,不可逆催化的影响不仅限于效率和生物必要性。在环境化学中,可以利用不可逆催化过程来减轻污染。汽车中的催化转换器利用不可逆反应将有害气体如一氧化碳转化为较少有害的物质,如二氧化碳。这个应用说明了不可逆催化如何有助于更清洁的空气和更健康的环境。尽管有许多优点,不可逆催化确实存在一些局限性。一个挑战是,一旦反应发生,就不可能恢复原始反应物。这种不可逆性在某些情况下可能成为问题,例如当有价值的反应物在过程中被消耗时。此外,设计有效的不可逆催化剂可能很复杂,需要广泛的研究和开发,以确定适合的材料和条件,以促进所需的反应,同时最小化副反应。总之,不可逆催化是化学中的一个基本概念,在工业和生物背景中提供了许多好处。其高效产生稳定产品的能力使其在从药物合成到环境保护的各种应用中变得不可或缺。随着这一领域的研究不断进展,我们可以期待发现更多创新的不可逆催化用途,进一步增强其在科学和技术中的重要性。
相关单词