fundamental particle

简明释义

1. 基本粒子; 2. 基本质点;

英英释义

A fundamental particle is a basic constituent of matter and energy that cannot be broken down into smaller components.

基本粒子是物质和能量的基本组成部分,不能被分解为更小的成分。

例句

1.The standard model of particle physics describes the interactions between fundamental particles 基本粒子 and forces.

粒子物理学的标准模型描述了fundamental particles 基本粒子与力之间的相互作用。

2.Quarks are another type of fundamental particle 基本粒子 that combine to form protons and neutrons.

夸克是另一种类型的fundamental particle 基本粒子,它们结合形成质子和中子。

3.Electrons are considered fundamental particles 基本粒子 because they do not have any known substructure.

电子被认为是fundamental particles 基本粒子,因为它们没有已知的内部结构。

4.The discovery of the Higgs boson provided evidence for the existence of fundamental particles 基本粒子 with mass.

希格斯玻色子的发现为具有质量的fundamental particles 基本粒子的存在提供了证据。

5.In physics, a fundamental particle 基本粒子 is a particle that is not made up of smaller particles.

在物理学中,fundamental particle 基本粒子 是一种不由更小粒子组成的粒子。

作文

In the field of physics, the concept of a fundamental particle (基本粒子) is crucial to our understanding of the universe. These particles are considered the building blocks of matter, as they cannot be broken down into smaller components. The study of fundamental particles (基本粒子) has led to significant advancements in both theoretical and experimental physics, shaping our comprehension of the natural world.At the heart of the Standard Model of particle physics, which is a well-established theory that describes the electromagnetic, weak, and strong nuclear forces, lie these fundamental particles (基本粒子). They are divided into two main categories: fermions and bosons. Fermions include quarks and leptons, while bosons are responsible for mediating forces between particles, such as the photon for electromagnetic force and the gluon for the strong force.Quarks, which combine to form protons and neutrons, are among the most well-known fundamental particles (基本粒子). There are six types of quarks, known as flavors: up, down, charm, strange, top, and bottom. Each of these quarks has a corresponding antiparticle, which also plays a critical role in understanding particle interactions. Leptons, on the other hand, include electrons, muons, and neutrinos, each of which contributes to various processes in the universe.The discovery of the Higgs boson in 2012 was a monumental achievement in the study of fundamental particles (基本粒子). This particle is associated with the Higgs field, which gives mass to other particles through the mechanism of spontaneous symmetry breaking. The existence of the Higgs boson not only confirmed a vital aspect of the Standard Model but also opened up new avenues for research, including the exploration of dark matter and the unification of forces.Understanding fundamental particles (基本粒子) is not only important for physicists but also for anyone interested in the nature of reality. The interactions between these particles govern everything from the formation of atoms to the behavior of stars. By studying their properties and behaviors, scientists can gain insights into the origins of the universe and the fundamental laws that dictate its evolution.Moreover, research into fundamental particles (基本粒子) has practical applications beyond theoretical physics. Technologies such as MRI machines and particle accelerators, which are used in medical imaging and cancer treatment, respectively, stem from our understanding of these particles. Thus, the implications of studying fundamental particles (基本粒子) extend far beyond the realm of academia, impacting everyday life.In conclusion, the term fundamental particle (基本粒子) represents a foundational concept in physics that encapsulates the essence of matter and energy in the universe. As we continue to explore these particles and their interactions, we not only enhance our scientific knowledge but also deepen our appreciation for the complexity and beauty of the cosmos. The journey into the world of fundamental particles (基本粒子) is a testament to human curiosity and the relentless pursuit of understanding the universe we inhabit.

在物理学领域,基本粒子(fundamental particle)的概念对于我们理解宇宙至关重要。这些粒子被视为物质的基本构建块,因为它们无法被分解成更小的组成部分。对基本粒子(fundamental particle)的研究已导致理论和实验物理学的重大进展,塑造了我们对自然世界的理解。在粒子物理学的标准模型中,这一成熟的理论描述了电磁力、弱核力和强核力,这些基本粒子(fundamental particle)是其核心。它们主要分为两大类:费米子和玻色子。费米子包括夸克和轻子,而玻色子则负责介导粒子之间的相互作用,例如光子负责电磁力,胶子负责强力。夸克是最著名的基本粒子(fundamental particle)之一,它们组合形成质子和中子。夸克有六种类型,称为味道:上夸克、下夸克、魅夸克、奇夸克、顶夸克和底夸克。每种夸克都有一个对应的反粒子,这在理解粒子相互作用中也起着关键作用。另一方面,轻子包括电子、μ子和中微子,每一种都对宇宙中的各种过程做出了贡献。2012年希格斯玻色子的发现是研究基本粒子(fundamental particle)的一项重大成就。该粒子与希格斯场相关联,后者通过自发对称破缺机制赋予其他粒子质量。希格斯玻色子的存在不仅确认了标准模型的重要方面,还为研究打开了新的途径,包括暗物质的探索和力的统一。理解基本粒子(fundamental particle)不仅对物理学家很重要,也对任何对现实本质感兴趣的人至关重要。这些粒子之间的相互作用决定了从原子的形成到恒星的行为的一切。通过研究它们的性质和行为,科学家可以深入了解宇宙的起源以及支配其演化的基本法则。此外,对基本粒子(fundamental particle)的研究在理论物理学之外也具有实际应用。诸如MRI机器和粒子加速器等技术,分别用于医学成像和癌症治疗,源于我们对这些粒子的理解。因此,研究基本粒子(fundamental particle)的影响远远超出学术界,影响着日常生活。总之,基本粒子(fundamental particle)这一术语代表了物理学中的一个基础概念,它概括了宇宙中物质和能量的本质。随着我们继续探索这些粒子及其相互作用,我们不仅增强了科学知识,还加深了对宇宙复杂性和美丽的欣赏。进入基本粒子(fundamental particle)世界的旅程证明了人类的好奇心和对理解我们所居住宇宙的不懈追求。

相关单词

particle

particle详解:怎么读、什么意思、用法