subequal

简明释义

[ˌsʌbˈiːkwəl][ˌsʌbˈiːkwəl]

adj. 几乎相等的

英英释义

Subequal refers to something that is nearly equal or of a similar degree, but not exactly equal.

Subequal 指的是某物几乎相等或在相似程度上,但并不完全相等。

单词用法

同义词

equivalent

等价的

These two measurements are equivalent in value.

这两个测量值是等价的。

similar

相似的

The two theories are similar in their approach to the problem.

这两种理论在解决问题的方法上是相似的。

comparable

可比较的

The results from both experiments are comparable.

这两个实验的结果是可比较的。

analogous

类似的

Her situation is analogous to that of other students.

她的情况与其他学生的情况类似。

反义词

unequal

不等的

The two sides of the equation are unequal.

方程的两边是不相等的。

disparate

不同的

Their skills are disparate, making collaboration challenging.

他们的技能差异很大,这使得合作变得困难。

例句

1.After planning, the paths satisfy that : ( 1 ) All the path angles are subequal ;

规划后的路径满足:(1)有统一的相对固定的铺丝角度;

2.After planning, the paths satisfy that : ( 1 ) All the path angles are subequal ;

规划后的路径满足:(1)有统一的相对固定的铺丝角度;

3.In this mathematical model, the variables x and y are considered to be subequal 次等的 since they yield similar results under certain conditions.

在这个数学模型中,变量x和y被认为是次等的,因为它们在某些条件下产生相似的结果。

4.The research indicates that the effects of both drugs are subequal 次等的 when administered at the same dosage.

研究表明,当两种药物以相同剂量给药时,它们的效果是次等的

5.The team concluded that the two strategies were subequal 次等的 in terms of efficiency.

团队得出结论,认为这两种策略在效率方面是次等的

6.In the experiment, the two solutions were found to be subequal 次等的 in their acidity levels.

在实验中,发现这两种溶液的酸度水平是次等的

7.The two species of birds have subequal 次等的 populations in the region, affecting their mating patterns.

这两种鸟类在该地区有次等的种群数量,影响了它们的交配模式。

作文

In the study of mathematics and geometry, we often encounter various terms that describe relationships between figures and quantities. One such term is subequal, which refers to quantities or figures that are equal in some respects but not entirely equivalent in all aspects. Understanding the concept of subequal is essential for students as it helps them grasp complex ideas in both theoretical and practical applications. For instance, when we deal with triangles, two triangles may be considered subequal if they have equal angles but different side lengths. This notion is crucial in the field of trigonometry, where angle measures play a significant role in determining the properties of geometric shapes.Furthermore, the idea of subequal can extend beyond mathematics into various fields such as physics and economics. In physics, we might analyze forces acting on an object; two forces can be subequal if they produce the same effect on the object despite differing magnitudes. This concept is particularly useful when discussing equilibrium, where multiple forces balance each other out, leading to a stable condition.In economics, the term subequal can be applied when comparing different market conditions or economic indicators. For example, two countries may have subequal GDP growth rates, indicating that while their economies are growing at similar rates, the underlying factors driving that growth could vary significantly. This distinction is vital for policymakers who need to understand the nuances of economic performance and make informed decisions based on comprehensive analyses.Moreover, the application of subequal can also be seen in social sciences. When studying demographics, researchers might find that two populations are subequal in terms of age distribution but differ in other characteristics such as income levels or education. Recognizing these differences is critical for developing effective social programs and interventions that cater to the specific needs of each group.In conclusion, the term subequal serves as a reminder that equality can be context-dependent and multifaceted. It encourages us to look beyond surface-level comparisons and to consider the underlying factors that contribute to the relationships between different entities. Whether in mathematics, physics, economics, or social sciences, understanding the concept of subequal enriches our knowledge and enhances our analytical skills. By appreciating the subtleties of subequal relationships, we become better equipped to tackle complex problems and make more informed decisions in various aspects of life.

在数学和几何的研究中,我们常常会遇到各种术语,这些术语描述了图形和数量之间的关系。其中一个术语是subequal,它指的是在某些方面相等但在所有方面并不完全等同的数量或图形。理解subequal的概念对学生来说至关重要,因为它帮助他们掌握理论和实际应用中的复杂思想。例如,当我们处理三角形时,如果两个三角形具有相等的角度但边长不同,则可以认为这两个三角形是subequal的。这个概念在三角学领域至关重要,因为角度测量在确定几何形状的性质中发挥着重要作用。此外,subequal的概念可以扩展到物理学和经济学等多个领域。在物理学中,我们可能会分析作用于物体上的力;如果两个力对物体产生相同的效果,尽管大小不同,它们可以被视为subequal。这个概念在讨论平衡状态时尤其有用,在这种状态下,多个力量彼此平衡,从而导致稳定的条件。在经济学中,当比较不同的市场条件或经济指标时,可以应用subequal一词。例如,两个国家的GDP增长率可能是subequal的,这表明虽然它们的经济以相似的速度增长,但推动这种增长的基本因素可能存在显著差异。这种区别对于需要理解经济表现细微差别并基于全面分析做出明智决策的政策制定者至关重要。此外,subequal的应用还可以在社会科学中看到。当研究人口统计时,研究人员可能发现两个群体在年龄分布上是subequal的,但在收入水平或教育程度等其他特征上存在差异。认识到这些差异对于制定有效的社会项目和干预措施,以满足每个群体的具体需求至关重要。总之,subequal这个术语提醒我们,平等可能是依赖于上下文和多面的。它鼓励我们超越表面比较,考虑影响不同实体之间关系的潜在因素。无论是在数学、物理学、经济学还是社会科学中,理解subequal的概念都丰富了我们的知识,并增强了我们的分析能力。通过欣赏subequal关系的细微差别,我们能够更好地应对复杂问题,并在生活的各个方面做出更明智的决策。