deformational trap

简明释义

1. 构造圈闭; 2. 变形圈闭;

英英释义

A deformational trap is a geological structure where the deformation of rock layers creates a configuration that can accumulate and trap hydrocarbons or other fluids.

变形陷阱是一种地质结构,其中岩层的变形形成了可以积聚和捕获碳氢化合物或其他流体的构造。

例句

1.In seismic studies, identifying a deformational trap 变形陷阱 is crucial for predicting earthquake activity.

在地震研究中,识别变形陷阱 deformational trap 对预测地震活动至关重要。

2.The team discovered a new deformational trap 变形陷阱 that could store large amounts of natural gas.

团队发现了一个新的变形陷阱 deformational trap,可能储存大量天然气。

3.Understanding the mechanics of a deformational trap 变形陷阱 helps in resource management.

理解变形陷阱 deformational trap 的机制有助于资源管理。

4.Research on deformational traps 变形陷阱 has opened new avenues for exploration in the oil industry.

变形陷阱 deformational traps 的研究为石油行业的勘探开辟了新途径。

5.The geologist explained how the deformational trap 变形陷阱 can lead to significant oil reserves in certain regions.

地质学家解释了如何通过变形陷阱 deformational trap 在某些地区形成重要的石油储备。

作文

In the study of geology and petroleum engineering, the concept of a deformational trap plays a crucial role in understanding how hydrocarbons are stored within the Earth's crust. A deformational trap refers to a geological structure that forms due to the deformation of rock layers, which creates a space where oil and gas can accumulate. This accumulation occurs as a result of tectonic forces that alter the original positioning of sedimentary layers, leading to the formation of folds, faults, and other structural features. To comprehend the significance of deformational traps, one must first understand the processes involved in hydrocarbon generation and migration. Hydrocarbons are formed from the remains of ancient marine organisms buried under layers of sediment. Over millions of years, heat and pressure transform these organic materials into oil and gas. Once formed, these hydrocarbons migrate through porous rock layers until they encounter an impermeable layer that prevents their further ascent. This is where deformational traps become essential. As tectonic movements occur, they can create various types of traps, including anticlines, fault traps, and salt domes. Anticlines are arch-like structures where rock layers bend upwards, creating a pocket for hydrocarbons to collect. Fault traps occur when a fault line displaces rock layers, trapping hydrocarbons on one side of the fault. Salt domes, on the other hand, form when buoyant salt rises through overlying rock layers, causing deformation and creating spaces for hydrocarbons to accumulate. The identification of deformational traps is critical for successful oil and gas exploration. Geologists use various methods, including seismic surveys and geological mapping, to locate these structures. Seismic surveys involve sending sound waves into the ground and analyzing the reflected waves to create images of subsurface formations. This technology allows geologists to visualize the complex arrangements of rock layers and identify potential deformational traps where hydrocarbons may be present. Once a potential trap is identified, drilling operations can commence. The success of these operations often hinges on the accurate prediction of the size and shape of the deformational trap. If the trap is large enough to hold significant quantities of hydrocarbons, it can lead to economically viable production. However, if the trap is smaller than anticipated, the investment may not yield profitable returns. In conclusion, the concept of a deformational trap is integral to the field of geology and petroleum engineering. It highlights the intricate relationship between geological processes and hydrocarbon accumulation. Understanding deformational traps not only aids in the exploration of natural resources but also enhances our knowledge of Earth's dynamic systems. As technology advances, the ability to accurately identify and analyze these traps will continue to improve, leading to more efficient and responsible energy extraction practices. Ultimately, the study of deformational traps exemplifies the intersection of science and industry, illustrating how geological principles can have profound implications for energy production and resource management.

在地质学和石油工程的研究中,“deformational trap”的概念在理解碳氢化合物如何储存在地壳中方面起着至关重要的作用。“deformational trap”指的是由于岩层变形而形成的地质结构,这种结构创造了一个油气可以积累的空间。这种积累是由于构造力改变了沉积层的原始位置,从而导致褶皱、断层及其他结构特征的形成。要理解“deformational trap”的重要性,首先必须了解碳氢化合物生成和迁移的过程。碳氢化合物是由埋藏在沉积层下的古代海洋生物遗骸形成的。经过数百万年的时间,热和压力将这些有机材料转变为石油和天然气。一旦形成,这些碳氢化合物会通过多孔岩层迁移,直到它们遇到一层不透水的岩层,阻止它们进一步上升。这就是“deformational trap”变得重要的地方。随着构造运动的发生,它们可以创建各种类型的陷阱,包括背斜、断层陷阱和盐丘。背斜是岩层向上弯曲形成的拱形结构,创造了一个积聚碳氢化合物的口袋。断层陷阱则发生在断层线位移岩层时,捕获碳氢化合物在断层的一侧。盐丘则是在浮力盐穿过上覆岩层时形成的,当盐上升时造成变形并创造出碳氢化合物积聚的空间。识别“deformational traps”对于成功的油气勘探至关重要。地质学家使用各种方法,包括地震勘测和地质制图,来定位这些结构。地震勘测涉及将声波发送到地下,并分析反射波以创建地下结构的图像。这项技术使地质学家能够可视化复杂的岩层排列,并识别潜在的“deformational traps”,这些地方可能存在碳氢化合物。一旦识别出潜在的陷阱,就可以开始钻探作业。这些作业的成功往往取决于对“deformational trap”大小和形状的准确预测。如果陷阱足够大,可以容纳大量的碳氢化合物,则可能导致经济上可行的生产。然而,如果陷阱比预期的小,投资可能不会带来盈利的回报。总之,“deformational trap”的概念对于地质学和石油工程领域至关重要。它突显了地质过程与碳氢化合物积累之间的复杂关系。理解“deformational traps”不仅有助于自然资源的勘探,还增强了我们对地球动态系统的认识。随着技术的发展,准确识别和分析这些陷阱的能力将继续提高,从而导致更高效和负责任的能源开采实践。最终,“deformational traps”的研究体现了科学与工业的交汇,说明地质原理如何对能源生产和资源管理产生深远的影响。