cumulative frequency

简明释义

积累频率

英英释义

Cumulative frequency is a statistical measure that represents the total number of observations that lie below or above a particular value in a data set.

累积频率是一个统计量,表示在数据集中低于或高于特定值的观察总数。

例句

1.In statistics, the cumulative frequency 累积频率 helps in understanding the distribution of data.

在统计学中,cumulative frequency 累积频率 有助于理解数据的分布。

2.The teacher explained how to create a cumulative frequency 累积频率 table to summarize the exam results.

老师解释了如何创建一个 cumulative frequency 累积频率 表来总结考试结果。

3.She plotted the cumulative frequency 累积频率 graph to visualize the data trends over time.

她绘制了 cumulative frequency 累积频率 图,以可视化数据随时间的趋势。

4.To find the median, you can use the cumulative frequency 累积频率 of the dataset.

要找到中位数,可以使用数据集的 cumulative frequency 累积频率

5.The cumulative frequency 累积频率 distribution is useful for analyzing survey results.

cumulative frequency 累积频率 分布对于分析调查结果很有用。

作文

Understanding data is crucial in today's world, especially when it comes to making informed decisions based on statistical analysis. One important concept in statistics is cumulative frequency, which refers to the running total of frequencies up to a certain point in a dataset. This concept helps us understand how data accumulates over time or across categories, providing valuable insights into trends and distributions.To illustrate the importance of cumulative frequency, let’s consider a simple example involving test scores of students in a class. Suppose we have the following scores: 56, 67, 70, 75, 80, and 85. To create a frequency distribution, we can group these scores into intervals. For instance, we might have the intervals 50-60, 61-70, 71-80, and 81-90. By counting how many scores fall into each interval, we can establish a frequency table:| Score Interval | Frequency ||----------------|-----------|| 50-60 | 1 || 61-70 | 2 || 71-80 | 3 || 81-90 | 1 |Now, to calculate the cumulative frequency, we add the frequencies cumulatively from the top down. The first interval (50-60) has a frequency of 1, so its cumulative frequency is also 1. The second interval (61-70) has a frequency of 2, so we add this to the previous cumulative frequency: 1 + 2 = 3. Continuing this process, we get:| Score Interval | Frequency | Cumulative Frequency ||----------------|-----------|----------------------|| 50-60 | 1 | 1 || 61-70 | 2 | 3 || 71-80 | 3 | 6 || 81-90 | 1 | 7 |The final cumulative frequency for the last interval (81-90) is 7, indicating that there are 7 scores less than or equal to 90. This cumulative information allows educators to quickly assess how many students scored below a certain threshold, which is essential for evaluating overall performance.In practical applications, cumulative frequency is widely used in various fields such as education, healthcare, and market research. For example, in healthcare, researchers may track the cumulative frequency of patients exhibiting symptoms over time to identify trends in disease outbreaks. Similarly, marketers might analyze the cumulative frequency of customer purchases to determine purchasing behavior and preferences.Moreover, visual representations of cumulative frequency can enhance comprehension. A cumulative frequency graph, or ogive, plots the cumulative frequency against the upper boundaries of the intervals, allowing viewers to easily visualize the accumulation of data. This graphical representation is particularly useful for identifying medians, quartiles, and percentiles, which are critical in data analysis.In conclusion, grasping the concept of cumulative frequency is vital for anyone involved in data analysis. It not only aids in understanding the distribution of data but also empowers individuals to make informed decisions based on statistical evidence. Whether in academia, business, or healthcare, the ability to interpret cumulative frequency can significantly enhance analytical skills and contribute to more effective outcomes.

理解数据在当今世界至关重要,尤其是在基于统计分析做出明智决策时。统计学中的一个重要概念是累积频率,它指的是在数据集中某一点的频率的运行总和。这个概念帮助我们理解数据如何随时间或类别的变化而累积,从而提供对趋势和分布的有价值的见解。为了说明累积频率的重要性,让我们考虑一个简单的例子,涉及一班学生的考试成绩。假设我们有以下成绩:56、67、70、75、80 和 85。为了创建频率分布,我们可以将这些成绩分组到区间中。例如,我们可能有区间 50-60、61-70、71-80 和 81-90。通过计算每个区间内有多少个成绩,我们可以建立一个频率表:| 成绩区间 | 频率 ||----------|------|| 50-60 | 1 || 61-70 | 2 || 71-80 | 3 || 81-90 | 1 |现在,为了计算累积频率,我们从上到下逐步累加频率。第一个区间(50-60)的频率为1,因此其累积频率也是1。第二个区间(61-70)的频率为2,因此我们将其加到前一个累积频率上:1 + 2 = 3。继续这个过程,我们得到:| 成绩区间 | 频率 | 累积频率 ||----------|------|----------|| 50-60 | 1 | 1 || 61-70 | 2 | 3 || 71-80 | 3 | 6 || 81-90 | 1 | 7 |最后一个区间(81-90)的累积频率为7,表示有7个成绩低于或等于90。这个累积信息使教育工作者能够迅速评估有多少学生在某个阈值以下得分,这对于评估整体表现至关重要。在实际应用中,累积频率广泛用于教育、医疗和市场研究等各个领域。例如,在医疗保健中,研究人员可能会跟踪患者症状的累积频率,以识别疾病暴发的趋势。同样,市场营销人员可能会分析客户购买的累积频率,以确定购买行为和偏好。此外,累积频率的可视化表示可以增强理解。累积频率图或ogive图将累积频率与区间的上限绘制在一起,使观众能够轻松可视化数据的累积。这种图形表示特别有助于识别中位数、四分位数和百分位数,这些都是数据分析中的关键。总之,掌握累积频率的概念对于任何参与数据分析的人来说都是至关重要的。它不仅有助于理解数据的分布,还使个人能够基于统计证据做出明智的决策。无论是在学术界、商业还是医疗保健中,解读累积频率的能力都可以显著增强分析技能并有助于更有效的结果。

相关单词

cumulative

cumulative详解:怎么读、什么意思、用法

frequency

frequency详解:怎么读、什么意思、用法