doubly degenerate
简明释义
1. 二重简并; 2. 二度简并;
英英释义
例句
1.In the context of group theory, we often encounter doubly degenerate 双重简并 representations that simplify calculations.
在群论的上下文中,我们经常遇到doubly degenerate 双重简并 表示,这简化了计算。
2.The doubly degenerate 双重简并 orbitals in an atom can lead to interesting chemical bonding properties.
原子中的doubly degenerate 双重简并 轨道可能导致有趣的化学结合特性。
3.In solid-state physics, doubly degenerate 双重简并 states can influence the electronic properties of materials.
在固态物理中,doubly degenerate 双重简并 状态可以影响材料的电子特性。
4.The vibrations of the molecule were found to be doubly degenerate 双重简并, indicating symmetry in its structure.
分子的振动被发现是doubly degenerate 双重简并,表明其结构具有对称性。
5.In quantum mechanics, a system can exhibit a doubly degenerate 双重简并 state where two distinct states share the same energy level.
在量子力学中,一个系统可以表现出一个doubly degenerate 双重简并 状态,其中两个不同的状态共享相同的能量水平。
作文
In the realm of quantum mechanics, the concept of degeneracy plays a significant role in understanding the behavior of particles and their energy states. One particularly interesting case is when we encounter systems that are described as doubly degenerate. This term refers to situations where two distinct quantum states share the same energy level, leading to a rich tapestry of physical implications. To grasp the significance of doubly degenerate states, it is essential to explore their occurrence in various physical systems, especially in atomic and molecular structures.For instance, consider an electron in a hydrogen atom. The energy levels of the electron are quantized, which means they can only occupy specific energy states. In certain configurations, particularly when considering the orbital angular momentum of electrons, we find that some energy levels can accommodate multiple states. When two different quantum states correspond to the same energy level, we describe this scenario as doubly degenerate. This degeneracy can arise from symmetries in the system, such as rotational symmetry, which allows for different orientations of the same energy state.The implications of doubly degenerate states extend beyond mere theoretical interest. In practical applications, these states can significantly affect the physical properties of materials. For example, in solid-state physics, the presence of doubly degenerate states can influence the conductivity and optical properties of semiconductors. When electrons transition between these degenerate states, they can contribute to phenomena such as photoconductivity, where the material conducts electricity more effectively when exposed to light.Moreover, doubly degenerate states are crucial in understanding the behavior of many-body systems. In quantum statistical mechanics, the occupancy of these states can lead to unique thermodynamic properties. For instance, in systems at low temperatures, the population of doubly degenerate states can result in Bose-Einstein condensation, where particles occupy the same quantum state, leading to macroscopic quantum phenomena.In addition to their role in fundamental physics, doubly degenerate states also have implications in fields like quantum computing. Quantum bits, or qubits, can exploit the principles of degeneracy to create robust systems that are less susceptible to errors. By utilizing doubly degenerate states, quantum computers can achieve higher levels of coherence and error correction, paving the way for more advanced computational capabilities.In conclusion, the concept of doubly degenerate states is a fascinating aspect of quantum mechanics that highlights the intricate relationships between energy, symmetry, and physical properties. From atomic structures to advanced technological applications, understanding these states provides valuable insights into the behavior of matter at the quantum level. As research continues to advance in this field, the exploration of doubly degenerate states will undoubtedly yield further discoveries that enhance our comprehension of the universe and its fundamental laws.
在量子力学领域,简并的概念在理解粒子及其能量状态的行为中发挥着重要作用。一个特别有趣的案例是当我们遇到被描述为双重简并的系统时。这个术语指的是两个不同的量子状态共享同一能量水平的情况,这导致了丰富的物理含义。要理解双重简并状态的重要性,有必要探讨它们在各种物理系统中的出现,尤其是在原子和分子结构中。例如,考虑氢原子中的电子。电子的能量水平是量子化的,这意味着它们只能占据特定的能量状态。在某些配置中,特别是在考虑电子的轨道角动量时,我们发现某些能量水平可以容纳多个状态。当两个不同的量子状态对应于同一能量水平时,我们将这种情况描述为双重简并。这种简并可能源于系统中的对称性,例如旋转对称性,它允许相同能量状态的不同方向。双重简并状态的影响超越了纯理论的兴趣。在实际应用中,这些状态可以显著影响材料的物理性质。例如,在固态物理中,双重简并状态的存在可以影响半导体的导电性和光学性质。当电子在这些简并状态之间跃迁时,它们可以导致光导现象,即材料在光照射下更有效地导电。此外,双重简并状态在理解多体系统的行为中也至关重要。在量子统计力学中,这些状态的占用可以导致独特的热力学性质。例如,在低温系统中,双重简并状态的占用可以导致玻色-爱因斯坦凝聚,其中粒子占据相同的量子状态,导致宏观量子现象。除了在基础物理中的作用外,双重简并状态在量子计算等领域也具有重要意义。量子比特或量子位可以利用简并的原理来创建更稳健的系统,这些系统不太容易受到错误的影响。通过利用双重简并状态,量子计算机可以实现更高水平的相干性和错误校正,为更先进的计算能力铺平道路。总之,双重简并状态的概念是量子力学的一个迷人方面,突显了能量、对称性和物理性质之间的复杂关系。从原子结构到先进的技术应用,理解这些状态为我们提供了对量子水平上物质行为的宝贵见解。随着这一领域研究的不断推进,对双重简并状态的探索无疑将带来进一步的发现,增强我们对宇宙及其基本法则的理解。
相关单词