multivariable output feedback system
简明释义
多变量输出反馈系统
英英释义
例句
1.A multivariable output feedback system 多变量输出反馈系统 is essential in automotive engineering for managing engine parameters effectively.
在汽车工程中,多变量输出反馈系统 multivariable output feedback system 对于有效管理发动机参数是必不可少的。
2.The implementation of a multivariable output feedback system 多变量输出反馈系统 in chemical reactors can optimize reaction conditions.
在化学反应器中实施多变量输出反馈系统 multivariable output feedback system 可以优化反应条件。
3.The design of a multivariable output feedback system 多变量输出反馈系统 is crucial for managing complex industrial processes.
设计一个多变量输出反馈系统 multivariable output feedback system 对于管理复杂的工业过程至关重要。
4.In robotics, a multivariable output feedback system 多变量输出反馈系统 can enhance the control of multiple joints simultaneously.
在机器人技术中,多变量输出反馈系统 multivariable output feedback system 可以增强对多个关节的同时控制。
5.Researchers are exploring the use of a multivariable output feedback system 多变量输出反馈系统 to improve the stability of drones during flight.
研究人员正在探索使用多变量输出反馈系统 multivariable output feedback system 来提高无人机飞行过程中的稳定性。
作文
In the realm of control systems, one of the most intriguing concepts is the multivariable output feedback system. This system is designed to handle multiple inputs and outputs simultaneously, making it particularly useful in complex engineering applications. To understand this concept better, we must first break down its components. A multivariable system refers to a scenario where various variables interact with each other, influencing the overall behavior of the system. In contrast, an output feedback system relies on the outputs of the system to inform the control actions taken. The significance of the multivariable output feedback system lies in its ability to optimize performance across different dimensions. For instance, in aerospace engineering, a plane's stability and maneuverability are governed by multiple factors including speed, altitude, and direction. By employing a multivariable output feedback system, engineers can ensure that adjustments made to one variable do not adversely affect others. This is crucial for maintaining safety and efficiency in flight operations.Moreover, the design of such systems often involves sophisticated mathematical models and algorithms. Control engineers utilize state-space representation and linear quadratic regulators to formulate strategies that can accurately predict how changes in one variable will impact others. The challenge here is to create a robust system that can adapt to unexpected disturbances while still providing reliable feedback based on current outputs.The application of multivariable output feedback systems extends beyond aerospace; they are also prevalent in automotive engineering, robotics, and even economic systems. For example, in an autonomous vehicle, the system must constantly process information from various sensors to navigate safely. Here, the multivariable output feedback system plays a critical role in integrating data from speed, direction, and obstacle proximity to make real-time decisions.Furthermore, the implementation of these systems requires careful consideration of stability and robustness. Engineers must ensure that the feedback mechanisms are tuned correctly so that the system responds appropriately to changes. If not managed properly, the system can become unstable, leading to undesirable outcomes. Thus, a deep understanding of both the theoretical and practical aspects of multivariable output feedback systems is essential for engineers working in this field.In conclusion, the multivariable output feedback system represents a pivotal advancement in control theory and engineering. Its ability to manage multiple interacting variables makes it indispensable in various high-tech applications. As technology continues to evolve, the importance of mastering such systems will only increase, paving the way for more sophisticated and efficient designs in the future. Whether in aviation, automotive, or other fields, the principles behind the multivariable output feedback system will remain at the forefront of engineering innovations.
在控制系统领域,有一个非常有趣的概念是多变量输出反馈系统。该系统旨在同时处理多个输入和输出,使其在复杂的工程应用中尤为有用。为了更好地理解这个概念,我们必须首先分解其组成部分。多变量系统指的是各种变量相互作用的场景,影响系统的整体行为。相反,输出反馈系统依赖于系统的输出信息来指导采取的控制措施。多变量输出反馈系统的重要性在于其能够在不同维度上优化性能。例如,在航空工程中,飞机的稳定性和机动性受到多个因素的影响,包括速度、高度和方向。通过采用多变量输出反馈系统,工程师可以确保对一个变量所做的调整不会对其他变量产生不利影响。这对于保持飞行操作的安全性和效率至关重要。此外,这类系统的设计通常涉及复杂的数学模型和算法。控制工程师利用状态空间表示法和线性二次调节器来制定策略,准确预测一个变量的变化将如何影响其他变量。这里的挑战在于创建一个能够适应意外干扰的稳健系统,同时根据当前输出提供可靠的反馈。多变量输出反馈系统的应用不仅限于航空领域,它们在汽车工程、机器人技术甚至经济系统中也很常见。例如,在一辆自主驾驶的汽车中,系统必须不断处理来自各种传感器的信息,以安全导航。在这里,多变量输出反馈系统在整合速度、方向和障碍物接近度的数据以实时做出决策方面发挥着关键作用。此外,这些系统的实施需要仔细考虑稳定性和鲁棒性。工程师必须确保反馈机制经过正确调优,以便系统能够适当地响应变化。如果管理不当,系统可能会变得不稳定,导致不良结果。因此,深入理解多变量输出反馈系统的理论和实践方面对于从事该领域的工程师至关重要。总之,多变量输出反馈系统代表了控制理论和工程领域的重要进展。它管理多个相互作用变量的能力使其在各种高科技应用中不可或缺。随着技术的不断发展,掌握这些系统的重要性只会增加,为未来更复杂、更高效的设计铺平道路。无论是在航空、汽车还是其他领域,多变量输出反馈系统背后的原理将始终处于工程创新的前沿。
相关单词