discontinuities
简明释义
英[ˌdɪskɒn.tɪˈnjuː.ɪ.tiz]美[ˌdɪs.kənˈtɪn.juː.tiz]
n. 不连续(discontinuity 的复数);间断点
英英释义
单词用法
数据中的不连续性 | |
解决不连续性 | |
检测不连续性 | |
几何不连续性 | |
时间不连续性 | |
市场中的不连续性 | |
环境中的不连续性 |
同义词
反义词
例句
1.The analysis shows that this method may be used to identify several types of the discontinuities which may occur at the magnetopause.
分析表明,这种方法可以用来识别磁层顶上可能出现的若干种间断。
2.The analysis shows that this method may be used to identify several types of the discontinuities which may occur at the magnetopause.
分析表明,这种方法可以用来识别磁层顶上可能出现的若干种间断。
3.Numerical results show their high-order accuracy and high resolution, and low oscillations across discontinuities.
数值实验表明了该类格式的高阶精度和分辨率,且过间断基本无振荡。
4.Which of the following discontinuities should be classified as a service induced discontinuity?
下列那种缺陷可归类为使用导致的缺陷?
5.Some discontinuities appear in the higher resolution that seem to result from small-scale instrument bias.
在高解析度的图中出现了一些不连续,似乎是小规模工具取样的原因。
6.As it stands now, the disaster will create short-term shortages, anomalies, and discontinuities.
按当前状况来看,这场灾难在短期内将会带来短缺、反常和间断。
7.Engineers often have to account for discontinuities in the terrain when planning construction projects.
工程师在规划建设项目时,常常需要考虑地形中的不连续性。
8.The data showed discontinuities that suggested a change in market trends over the past decade.
数据显示出不连续性,这表明过去十年市场趋势发生了变化。
9.The artist's work reflects the discontinuities between traditional and modern styles.
这位艺术家的作品反映了传统与现代风格之间的不连续性。
10.In the study of the ecosystem, we observed discontinuities in species distribution across different habitats.
在生态系统研究中,我们观察到不同栖息地物种分布的不连续性。
11.The engineer identified several discontinuities in the material that could lead to structural failure.
工程师识别出材料中存在几个不连续性,这可能导致结构失效。
作文
In the study of various fields, ranging from mathematics to physics and even in social sciences, the concept of discontinuities (不连续性) plays a crucial role. Discontinuities refer to points or intervals where a function or a sequence does not behave smoothly or predictably. Understanding these discontinuities (不连续性) can provide insights into the underlying structure of complex systems. For instance, in calculus, a function may have a discontinuity (不连续性) at a certain point where it jumps or is undefined, indicating a break in the expected behavior. This is essential for mathematicians and engineers who rely on continuity for modeling real-world phenomena.In physics, particularly in the study of materials, discontinuities (不连续性) can refer to abrupt changes in properties, such as density or temperature, which can significantly affect the behavior of materials under stress. Understanding these discontinuities (不连续性) helps engineers design safer and more efficient structures by anticipating how materials will react under different conditions. For example, when studying stress concentrations around a crack in a material, recognizing the discontinuities (不连续性) in the material's integrity is vital for predicting failure points.Moreover, in social sciences, discontinuities (不连续性) can manifest in societal changes or shifts in public opinion. These abrupt changes can be analyzed to understand the dynamics of social movements, economic crises, or political revolutions. Researchers often look for these discontinuities (不连续性) to identify critical turning points in history that have led to significant transformations. For instance, the sudden rise of a new technology or a major political event can create a discontinuity (不连续性) in societal norms and behaviors, reshaping the landscape of human interaction.The recognition of discontinuities (不连续性) encourages critical thinking and a deeper investigation into the causes and effects of change. In education, teaching students about discontinuities (不连续性) fosters analytical skills that are applicable across disciplines. Students learn to question assumptions and explore the implications of sudden changes, whether in mathematical models, physical systems, or societal trends.In conclusion, the concept of discontinuities (不连续性) is fundamental across various domains of study. Whether we are dealing with mathematical functions, physical materials, or social phenomena, recognizing and understanding these discontinuities (不连续性) is essential for advancing knowledge and making informed decisions. As we navigate an increasingly complex world, being aware of the discontinuities (不连续性) that arise in our analyses can lead to more robust solutions and innovations. Thus, the study of discontinuities (不连续性) not only enhances our understanding of individual fields but also encourages interdisciplinary approaches that can address the multifaceted challenges of our time.
在各种领域的研究中,从数学到物理学,甚至在社会科学中,discontinuities(不连续性)的概念发挥着至关重要的作用。Discontinuities(不连续性)指的是函数或序列在某些点或区间内不平滑或不可预测的行为。理解这些discontinuities(不连续性)可以提供对复杂系统基础结构的洞察。例如,在微积分中,一个函数在某个点可能存在discontinuity(不连续性),该点的值跳跃或未定义,表明期望行为中的断裂。这对依赖连续性来建模现实世界现象的数学家和工程师至关重要。在物理学中,特别是在材料研究中,discontinuities(不连续性)可以指属性(如密度或温度)发生突然变化的地方,这可能会显著影响材料在应力下的行为。理解这些discontinuities(不连续性)有助于工程师设计更安全、更高效的结构,通过预测材料在不同条件下的反应来实现。例如,在研究材料裂纹周围的应力集中时,识别材料完整性中的discontinuities(不连续性)对于预测失效点至关重要。此外,在社会科学中,discontinuities(不连续性)可以表现为社会变化或公众舆论的转变。这些突发的变化可以被分析以了解社会运动、经济危机或政治革命的动态。研究人员通常寻找这些discontinuities(不连续性)来识别历史上导致重大转变的关键转折点。例如,一项新技术的突然崛起或一场重大的政治事件可以在社会规范和行为中创造出一个discontinuity(不连续性),重新塑造人际互动的格局。对discontinuities(不连续性)的认识鼓励批判性思维和对变化原因及影响的深入调查。在教育中,教学生关于discontinuities(不连续性)的知识培养了适用于各学科的分析技能。学生们学会质疑假设,探索突变的影响,无论是在数学模型、物理系统还是社会趋势中。总之,discontinuities(不连续性)的概念在各个研究领域都是基础。无论我们处理的是数学函数、物理材料还是社会现象,识别和理解这些discontinuities(不连续性)对于推进知识和做出明智决策至关重要。当我们在一个日益复杂的世界中航行时,意识到我们分析中的discontinuities(不连续性)可以导致更稳健的解决方案和创新。因此,研究discontinuities(不连续性)不仅增强了我们对各个领域的理解,还鼓励跨学科的方法,以应对我们时代的多方面挑战。