anhysteretic remanent magnetism

简明释义

非滞后剩余磁化;

英英释义

Anhysteretic remanent magnetism refers to the magnetization that remains in a material after an external magnetic field is removed, specifically when the material has been subjected to a gradually increasing magnetic field without any hysteresis effects.

无滞后剩余磁性是指在外部磁场移除后,材料中残留的磁化,特别是在材料经历了逐渐增加的磁场而没有任何滞后效应的情况下。

例句

1.The study of anhysteretic remanent magnetism 无滞后剩余磁性 is crucial for understanding the magnetic properties of geological formations.

无滞后剩余磁性的研究对理解地质构造的磁性特性至关重要。

2.Geophysicists often analyze anhysteretic remanent magnetism 无滞后剩余磁性 to assess mineral deposits.

地球物理学家通常分析无滞后剩余磁性以评估矿床。

3.Researchers measured anhysteretic remanent magnetism 无滞后剩余磁性 in sediment samples to infer past environmental conditions.

研究人员测量了沉积样本中的无滞后剩余磁性以推断过去的环境条件。

4.In paleomagnetism, anhysteretic remanent magnetism 无滞后剩余磁性 helps scientists determine the historical magnetic field directions.

在古地磁学中,无滞后剩余磁性帮助科学家确定历史磁场的方向。

5.The presence of anhysteretic remanent magnetism 无滞后剩余磁性 in rocks can indicate their exposure to ancient magnetic fields.

岩石中存在的无滞后剩余磁性可能表明它们曾暴露于古代磁场。

作文

Understanding the concept of anhysteretic remanent magnetism is crucial for various fields, including geology, paleomagnetism, and materials science. This term refers to a specific type of magnetism that remains in a material after an external magnetic field has been removed, without any hysteresis loss. To grasp its significance, we need to delve into the principles of magnetism and how they apply to real-world scenarios.Magnetism is a fundamental property of materials, arising from the motion of electrons within atoms. When a magnetic field is applied to a ferromagnetic material, the magnetic domains within the material align with the field, causing it to become magnetized. Once the external field is removed, some materials retain this magnetization, and this retained magnetization can be classified into different types. One such type is anhysteretic remanent magnetism (无滞后剩余磁性), which is characterized by its linear relationship with the applied magnetic field.The term 'anhysteretic' implies that there is no energy loss due to hysteresis when the material is magnetized. In other words, the magnetization process is reversible, meaning that the material can return to its original state without any residual effects from the previous magnetic field. This property is particularly important in applications where precise control of magnetic properties is required, such as in data storage devices and magnetic sensors.In geology and paleomagnetism, anhysteretic remanent magnetism plays a vital role in understanding the Earth's magnetic history. Rocks can acquire this type of magnetism during their formation, preserving information about the Earth's magnetic field at that time. By studying these magnetic signatures, scientists can infer past geological events, such as plate tectonics and volcanic activity, contributing to our understanding of the planet's dynamic history.Moreover, anhysteretic remanent magnetism is essential in environmental studies, particularly in sedimentology. Sediments can capture the Earth’s magnetic field at the time of their deposition, allowing researchers to reconstruct historical climate changes and shifts in the Earth’s magnetic poles. This information is invaluable for predicting future climatic trends and understanding the long-term evolution of the Earth’s environment.In materials science, the study of anhysteretic remanent magnetism aids in the development of advanced magnetic materials. Researchers aim to create materials with specific magnetic properties for various applications, including electric motors, transformers, and magnetic resonance imaging (MRI) machines. By manipulating the factors that influence anhysteretic remanent magnetism, scientists can design materials that exhibit optimal performance in their respective applications.In conclusion, the concept of anhysteretic remanent magnetism is not merely an academic term; it has profound implications across multiple disciplines. From unraveling the mysteries of the Earth's past to innovating new technologies, understanding this phenomenon enriches our knowledge of magnetism and its applications. As research continues to advance, the significance of anhysteretic remanent magnetism will undoubtedly grow, highlighting the intricate relationship between magnetic properties and the natural world.

理解无滞后剩余磁性这一概念对于地质学、古地磁学和材料科学等多个领域至关重要。这个术语指的是在外部磁场移除后,材料中保持的一种特定类型的磁性,而没有任何滞后损失。为了掌握其重要性,我们需要深入探讨磁性原理及其在现实世界中的应用。磁性是材料的一种基本属性,源于原子内电子的运动。当一个磁场施加到铁磁材料上时,材料内部的磁畴会与该场对齐,导致材料被磁化。一旦外部磁场被移除,一些材料会保留这种磁化,而这种保留的磁化可以分为不同类型。其中一种类型就是无滞后剩余磁性anhysteretic remanent magnetism),其特点是与施加的磁场之间存在线性关系。“无滞后”一词表明,在材料被磁化时没有由于滞后而造成的能量损失。换句话说,磁化过程是可逆的,这意味着材料可以在没有来自先前磁场的残余效应的情况下恢复到其原始状态。这一特性在需要精确控制磁性特性的应用中尤为重要,例如在数据存储设备和磁传感器中。在地质学和古地磁学中,无滞后剩余磁性在理解地球磁历史方面发挥着关键作用。岩石在形成过程中可以获得这种类型的磁性,保存了当时地球磁场的信息。通过研究这些磁性特征,科学家可以推断过去的地质事件,如板块构造和火山活动,从而增进我们对地球动态历史的理解。此外,无滞后剩余磁性在环境研究中也至关重要,特别是在沉积学中。沉积物可以在沉积时捕捉地球的磁场,使研究人员能够重建历史气候变化和地球磁极的变化。这些信息对于预测未来气候趋势和理解地球环境的长期演变是无价的。在材料科学中,研究无滞后剩余磁性有助于开发先进的磁性材料。研究人员旨在创造具有特定磁性特性的材料,以用于各种应用,包括电动机、变压器和磁共振成像(MRI)设备。通过操控影响无滞后剩余磁性的因素,科学家可以设计出在各自应用中表现最佳的材料。总之,无滞后剩余磁性的概念不仅仅是一个学术术语;它在多个学科中具有深远的意义。从揭开地球过去的神秘面纱到创新新技术,理解这一现象丰富了我们对磁性及其应用的认识。随着研究的不断推进,无滞后剩余磁性的重要性无疑将不断增长,突显出磁性特性与自然世界之间错综复杂的关系。

相关单词

remanent

remanent详解:怎么读、什么意思、用法

magnetism

magnetism详解:怎么读、什么意思、用法