mean neutron lifetime

简明释义

中子平均寿命;

英英释义

The mean neutron lifetime is the average time that a free neutron exists before it decays into other particles, typically measured in seconds.

平均中子寿命是指自由中子在衰变成其他粒子之前存在的平均时间,通常以秒为单位测量。

例句

1.Researchers are investigating factors that could affect the mean neutron lifetime 中子平均寿命 in different materials.

研究人员正在调查可能影响不同材料中中子平均寿命 mean neutron lifetime 的因素。

2.The experimental measurement of the mean neutron lifetime 中子平均寿命 is crucial for understanding nuclear reactions.

实验测量的中子平均寿命 mean neutron lifetime 对于理解核反应至关重要。

3.In nuclear reactors, the mean neutron lifetime 中子平均寿命 plays a significant role in controlling the fission process.

在核反应堆中,中子平均寿命 mean neutron lifetime 在控制裂变过程中起着重要作用。

4.The mean neutron lifetime 中子平均寿命 is a key parameter in determining the stability of neutron-rich isotopes.

对于确定富中子同位素的稳定性,中子平均寿命 mean neutron lifetime 是一个关键参数。

5.A precise value for the mean neutron lifetime 中子平均寿命 helps improve our models of particle physics.

中子平均寿命 mean neutron lifetime 的精确值有助于改善我们对粒子物理的模型。

作文

The concept of mean neutron lifetime is a fundamental aspect of nuclear physics that plays a crucial role in understanding the behavior of neutrons within atomic nuclei. Neutrons are subatomic particles that, along with protons, make up the nucleus of an atom. They are electrically neutral and have a mass slightly greater than that of protons. One of the most intriguing properties of neutrons is their stability outside the nucleus. When free from the influence of other particles, a neutron eventually decays into a proton, an electron, and an antineutrino through a process known as beta decay. The mean neutron lifetime refers to the average time a free neutron exists before undergoing this decay process.Understanding the mean neutron lifetime is essential for several reasons. First, it helps scientists gauge the stability of matter in various environments, particularly in astrophysical contexts. For instance, in stars, the fusion processes that power them rely on the interactions between protons and neutrons. The lifetime of neutrons can influence the synthesis of elements during stellar evolution and supernova explosions, which are critical events in the life cycle of stars.Moreover, the mean neutron lifetime has implications for the theories of particle physics and cosmology. It provides insights into the forces at play within the atomic nucleus and helps physicists refine their models of fundamental interactions. For example, variations in the measured values of the mean neutron lifetime can lead to discussions about potential new physics beyond the Standard Model, which describes the known fundamental particles and their interactions.In practical applications, the mean neutron lifetime is also significant in fields such as nuclear energy and medical imaging. In nuclear reactors, understanding how neutrons behave and their lifetimes can optimize fission reactions, leading to more efficient energy production. Additionally, in medical applications like neutron capture therapy, knowledge of neutron behavior is crucial for effectively targeting cancer cells while minimizing damage to surrounding healthy tissues.The current accepted value for the mean neutron lifetime is approximately 14 minutes and 39 seconds. However, this value has been the subject of extensive research and debate. Different experimental methods have yielded slightly varying results, leading to a persistent discrepancy known as the 'neutron lifetime anomaly.' This ongoing investigation underscores the importance of precision measurements in physics and highlights the dynamic nature of scientific inquiry.In conclusion, the mean neutron lifetime is a key parameter in understanding both the microcosm of atomic structure and the macrocosm of cosmic phenomena. Its implications stretch across various domains, from theoretical physics to practical applications in energy and medicine. As research continues, our grasp of the mean neutron lifetime will undoubtedly evolve, potentially unlocking new avenues of knowledge in the field of nuclear science and beyond.

“平均中子寿命”是核物理学中的一个基本概念,对于理解中子在原子核内的行为起着至关重要的作用。中子是构成原子核的亚原子粒子,与质子一起存在。它们是电中性的,质量略大于质子。在中子最引人注目的特性之一是它们在原子核外的稳定性。当脱离其他粒子的影响时,中子最终会通过β衰变过程衰变为质子、电子和反中微子。“平均中子寿命”指的是自由中子在经历这一衰变过程前的平均存在时间。理解“平均中子寿命”对于多个原因至关重要。首先,它帮助科学家评估物质在各种环境中的稳定性,特别是在天体物理背景下。例如,在恒星中,推动它们的融合过程依赖于质子和中子之间的相互作用。中子的寿命可以影响元素在恒星演化和超新星爆炸过程中的合成,这些都是恒星生命周期中的关键事件。此外,“平均中子寿命”对粒子物理学和宇宙学理论也有重要意义。它提供了对原子核内作用力的深入洞察,并帮助物理学家完善他们的基本相互作用模型。例如,测量的“平均中子寿命”值的变化可能引发关于标准模型之外潜在新物理的讨论,该模型描述了已知的基本粒子及其相互作用。在实际应用中,“平均中子寿命”在核能和医学成像等领域也具有重要意义。在核反应堆中,了解中子的行为及其寿命可以优化裂变反应,从而提高能源生产效率。此外,在像中子捕获疗法这样的医学应用中,对中子行为的了解对于有效地靶向癌细胞,同时尽量减少对周围健康组织的损害至关重要。目前接受的“平均中子寿命”值约为14分钟39秒。然而,这一数值一直是广泛研究和辩论的主题。不同的实验方法产生了略有不同的结果,导致了一个持续的差异,被称为“中子寿命异常”。这一持续的调查强调了精确测量在物理学中的重要性,并突显了科学探究的动态性质。总之,“平均中子寿命”是理解原子结构微观世界和宇宙现象宏观世界的关键参数。它的影响跨越多个领域,从理论物理到能源和医学的实际应用。随着研究的继续,我们对“平均中子寿命”的理解无疑会不断发展,可能会开启核科学及其他领域的新知识途径。

相关单词

neutron

neutron详解:怎么读、什么意思、用法

lifetime

lifetime详解:怎么读、什么意思、用法