free enthalpy
简明释义
自批焓;
英英释义
例句
1.At constant temperature and pressure, the free enthalpy 自由焓 is minimized at equilibrium.
在恒温恒压下,平衡时
2.We can determine the free enthalpy 自由焓 change by measuring the heat absorbed or released during a reaction.
我们可以通过测量反应过程中吸收或释放的热量来确定
3.In thermodynamics, we often calculate the free enthalpy 自由焓 to predict the direction of a chemical reaction.
在热力学中,我们常常计算
4.The free enthalpy 自由焓 of formation can be used to calculate the stability of a compound.
生成的
5.The change in free enthalpy 自由焓 during the reaction can indicate whether the process is spontaneous.
反应过程中
作文
In the field of thermodynamics, the concept of free enthalpy (自由焓) plays a crucial role in understanding how energy is transferred and transformed in various systems. Free enthalpy, often referred to as Gibbs free energy in the context of chemical reactions, is a thermodynamic potential that measures the maximum reversible work obtainable from a thermodynamic system at constant temperature and pressure. This concept is essential for predicting the spontaneity of processes and the equilibrium position of chemical reactions.To understand free enthalpy (自由焓), it is important to first grasp the principles of enthalpy and entropy. Enthalpy, denoted by H, is a measure of the total heat content of a system, while entropy, denoted by S, is a measure of the disorder or randomness within that system. The relationship between these two properties is encapsulated in the equation:G = H - TS,where G represents free enthalpy (自由焓), T is the absolute temperature in Kelvin, and S is the entropy. This equation shows that free enthalpy (自由焓) combines both the energy available for work and the degree of disorder in a system.A key aspect of free enthalpy (自由焓) is its ability to predict the direction of a chemical reaction. If the change in free enthalpy (自由焓) during a reaction (ΔG) is negative, the reaction is spontaneous, meaning it can occur without external intervention. Conversely, if ΔG is positive, the reaction is non-spontaneous and requires an input of energy to proceed. When ΔG equals zero, the system is at equilibrium, indicating that the forward and reverse reactions occur at the same rate.The applications of free enthalpy (自由焓) extend beyond chemistry; it is also applicable in biology, environmental science, and engineering. For instance, in biological systems, free enthalpy (自由焓) helps explain metabolic processes and the energy changes that occur during cellular respiration. Understanding how organisms convert food into energy involves analyzing the free enthalpy (自由焓) changes associated with biochemical reactions.Moreover, in environmental science, the concept of free enthalpy (自由焓) is vital for assessing the feasibility of reactions that involve pollutant degradation or energy production from renewable resources. Engineers utilize free enthalpy (自由焓) calculations to design more efficient systems, such as heat engines and refrigeration cycles, by optimizing the energy transformations involved.In conclusion, free enthalpy (自由焓) is a fundamental concept in thermodynamics that provides insights into the energy dynamics of chemical reactions and physical processes. By understanding the interplay between enthalpy and entropy, scientists and engineers can predict reaction spontaneity, assess equilibrium conditions, and design systems that harness energy more effectively. As we continue to explore the intricacies of energy transfer and transformation, the significance of free enthalpy (自由焓) will undoubtedly remain central to advancements in multiple scientific disciplines.
在热力学领域,自由焓(free enthalpy)这一概念在理解能量如何在各种系统中转移和转化方面起着至关重要的作用。自由焓,通常在化学反应的背景下称为吉布斯自由能,是一种热力学势,用于测量在恒定温度和压力下从热力学系统中获得的最大可逆功。这一概念对于预测过程的自发性和化学反应的平衡位置至关重要。要理解自由焓(free enthalpy),首先需要掌握焓和熵的基本原理。焓(H)是系统总热含量的测量,而熵(S)则是对系统内无序或随机程度的测量。这两个属性之间的关系体现在以下方程中:G = H - TS,其中G表示自由焓(free enthalpy),T是开尔文的绝对温度,S是熵。该方程表明,自由焓(free enthalpy)结合了可用于做功的能量和系统的无序程度。自由焓(free enthalpy)的一个关键方面是其预测化学反应方向的能力。如果反应过程中自由焓(free enthalpy)的变化(ΔG)为负,则反应是自发的,意味着它可以在没有外部干预的情况下发生。相反,如果ΔG为正,则反应是非自发的,需要输入能量才能进行。当ΔG等于零时,系统处于平衡状态,表明正向和反向反应以相同的速率发生。自由焓(free enthalpy)的应用不仅限于化学;它在生物学、环境科学和工程学中也具有重要意义。例如,在生物系统中,自由焓(free enthalpy)有助于解释代谢过程以及细胞呼吸过程中发生的能量变化。理解生物体如何将食物转化为能量涉及分析与生化反应相关的自由焓(free enthalpy)变化。此外,在环境科学中,自由焓(free enthalpy)概念对于评估涉及污染物降解或从可再生资源中产生能量的反应的可行性至关重要。工程师利用自由焓(free enthalpy)计算来设计更高效的系统,例如热机和制冷循环,通过优化涉及的能量转化。总之,自由焓(free enthalpy)是热力学中的一个基本概念,为化学反应和物理过程的能量动态提供了见解。通过理解焓和熵之间的相互作用,科学家和工程师能够预测反应的自发性,评估平衡条件,并设计出更有效地利用能量的系统。随着我们继续探索能量转移和转化的复杂性,自由焓(free enthalpy)的重要性无疑将在多个科学学科的进步中保持核心地位。
相关单词