visual pigment

简明释义

视色素

英英释义

Visual pigment refers to a light-sensitive molecule found in photoreceptor cells of the retina, which is responsible for the initial stages of visual perception by absorbing photons and triggering a biochemical response.

视觉色素是指在视网膜的光感受器细胞中发现的光敏分子,负责通过吸收光子并触发生化反应来进行视觉感知的初始阶段。

例句

1.The visual pigment 视觉色素 in the retina is responsible for converting light into electrical signals for the brain.

视网膜中的视觉色素 visual pigment 负责将光转换为电信号传递给大脑。

2.Research indicates that changes in visual pigment 视觉色素 can lead to color blindness.

研究表明,视觉色素 visual pigment 的变化可能导致色盲。

3.Scientists are exploring how visual pigment 视觉色素 affects the perception of color in different lighting conditions.

科学家们正在探索视觉色素 visual pigment 如何影响在不同光照条件下的颜色感知。

4.Different species have adapted their visual pigment 视觉色素 to suit their environments, affecting their ability to see in low light.

不同物种已经调整了它们的视觉色素 visual pigment 以适应其环境,从而影响它们在低光条件下的视力。

5.The study of the eye's structure revealed that the visual pigment 视觉色素 plays a crucial role in light detection.

对眼睛结构的研究揭示,视觉色素 visual pigment 在光线检测中起着至关重要的作用。

作文

The human eye is a remarkable organ that allows us to perceive the world around us. One of the key components that enable our vision is the presence of visual pigments. These are light-sensitive molecules found in the photoreceptor cells of our retinas, specifically in the rods and cones. The role of visual pigments is crucial for the process of converting light into electrical signals that our brain interprets as images. In the retina, there are two main types of photoreceptor cells: rods and cones. Rods are responsible for vision in low-light conditions and do not detect color, while cones function in brighter light and allow us to see colors. Each type of photoreceptor contains different visual pigments, which determine their sensitivity to light wavelengths. For example, the pigment rhodopsin is found in rods and is highly sensitive to dim light, making it essential for night vision. On the other hand, cones contain three different types of visual pigments: one for short wavelengths (blue), one for medium wavelengths (green), and one for long wavelengths (red). This trichromatic nature of cone pigments enables us to perceive a wide spectrum of colors through the combination of these three primary colors.The process of vision begins when light enters the eye and strikes the visual pigments in the photoreceptors. When light photons hit these pigments, they undergo a chemical change, leading to a series of biochemical reactions. This process is known as phototransduction. As the visual pigments change shape, they trigger a cascade of events that ultimately result in the generation of an electrical signal. This signal is then transmitted to the brain via the optic nerve, where it is processed and interpreted as a visual image.Interestingly, the efficiency of visual pigments can be affected by various factors, including age, health, and environmental conditions. For instance, as we age, the number of functional photoreceptors may decrease, leading to diminished vision. Additionally, certain diseases, such as retinitis pigmentosa, can affect the function of visual pigments and lead to progressive vision loss. Furthermore, exposure to bright light can temporarily bleach the visual pigments, reducing their effectiveness until they regenerate.Research into visual pigments has also opened up avenues for advancements in vision correction and treatment. Scientists are exploring gene therapies that aim to restore or enhance the function of specific visual pigments in individuals with inherited retinal diseases. By understanding the molecular structure and function of these pigments, researchers hope to develop targeted treatments that could potentially restore vision.In conclusion, visual pigments are fundamental to our ability to see and interact with the world. They play a vital role in the complex process of vision, allowing us to perceive light, color, and detail. Understanding how these pigments work not only sheds light on the intricacies of human vision but also paves the way for future innovations in treating vision impairments. As research continues to advance, we may find new ways to harness the power of visual pigments to improve visual health for generations to come.

人眼是一个非凡的器官,使我们能够感知周围的世界。使我们能够看到的关键组成部分之一是存在于视网膜的光感受器细胞中的视觉色素。这些是对光敏感的分子,具体来说是在杆状细胞和锥状细胞中。视觉色素的作用对于将光转换为电信号的过程至关重要,而这些信号被我们的脑部解读为图像。在视网膜中,有两种主要类型的光感受器细胞:杆状细胞和锥状细胞。杆状细胞负责在低光条件下的视觉,并且不检测颜色,而锥状细胞在更明亮的光线下工作,使我们能够看到颜色。每种类型的光感受器都含有不同的视觉色素,这决定了它们对光波长的敏感性。例如,视紫红质是一种存在于杆状细胞中的色素,对微弱光线高度敏感,使其在夜间视觉中至关重要。另一方面,锥状细胞含有三种不同类型的视觉色素:一种用于短波长(蓝色),一种用于中波长(绿色),一种用于长波长(红色)。这种锥体色素的三原色特性使我们能够通过这三种基本颜色的组合感知广泛的颜色谱。视觉的过程始于光线进入眼睛并击中光感受器中的视觉色素。当光子撞击这些色素时,它们会经历化学变化,导致一系列生化反应。这个过程被称为光转导。当视觉色素的形状发生变化时,它们触发了一系列事件,最终导致电信号的产生。该信号随后通过视神经传递到大脑,在那里被处理并解释为视觉图像。有趣的是,视觉色素的效率可能受到各种因素的影响,包括年龄、健康和环境条件。例如,随着年龄的增长,功能性光感受器的数量可能会减少,导致视力减退。此外,某些疾病,如视网膜色素变性,可能会影响视觉色素的功能并导致逐渐的视力丧失。此外,暴露于强光下可能会暂时漂白视觉色素,降低其有效性,直到它们再生。对视觉色素的研究还开辟了视觉矫正和治疗的进展。科学家们正在探索基因疗法,旨在恢复或增强特定视觉色素在遗传性视网膜疾病患者中的功能。通过理解这些色素的分子结构和功能,研究人员希望开发出针对性的治疗方法,可能恢复视力。总之,视觉色素是我们能够看到和与世界互动的基础。它们在复杂的视觉过程中发挥着至关重要的作用,使我们能够感知光、颜色和细节。了解这些色素的工作原理不仅揭示了人类视觉的复杂性,还为未来改善视力障碍的创新铺平了道路。随着研究的持续推进,我们可能会找到新的方法来利用视觉色素的力量,以改善未来几代人的视觉健康。

相关单词

visual

visual详解:怎么读、什么意思、用法