Markovian variable
简明释义
1. 马尔科夫变量; 2. 马尔可夫变量; 3. 马尔可夫变数;
英英释义
A Markovian variable is a random variable whose future states depend only on its present state and not on the sequence of events that preceded it. | 马尔可夫变量是一个随机变量,其未来状态仅依赖于当前状态,而与之前发生的事件序列无关。 |
例句
1.Weather forecasting models often treat temperature as a Markovian variable (马尔可夫变量) based on the current day's conditions.
天气预报模型通常将温度视为Markovian variable(马尔可夫变量),基于当前一天的条件。
2.The stock price can be modeled as a Markovian variable (马尔可夫变量) since its future value depends only on its present value.
股票价格可以建模为Markovian variable(马尔可夫变量),因为其未来值仅依赖于当前值。
3.In reinforcement learning, the agent's state can be considered a Markovian variable (马尔可夫变量) if it captures all relevant information.
在强化学习中,如果代理的状态捕捉了所有相关信息,则该状态可以视为Markovian variable(马尔可夫变量)。
4.The transition probabilities in a Markov process are defined by the Markovian variable (马尔可夫变量) that governs the system's evolution.
马尔可夫过程中的转移概率由控制系统演变的Markovian variable(马尔可夫变量)定义。
5.In a Markov chain, the future state is determined solely by the current state, which is why we refer to it as a Markovian variable (马尔可夫变量).
在马尔可夫链中,未来状态仅由当前状态决定,这就是我们称之为Markovian variable(马尔可夫变量)的原因。
作文
In the realm of probability theory and statistics, understanding concepts such as the Markovian variable is essential for analyzing stochastic processes. A Markovian variable refers to a type of random variable that possesses the Markov property, which states that the future state of a process depends only on its present state and not on its past states. This characteristic simplifies the modeling of complex systems and makes it easier to predict future outcomes based on current information.To illustrate the significance of Markovian variables, consider a simple example of a board game where a player moves according to the roll of a die. The position of the player on the board can be represented as a Markovian variable. In this scenario, the player's next position is determined solely by the current position and the result of the die roll, without any influence from previous positions. This exemplifies how the Markov property allows us to focus only on the present state to make predictions about the future.The concept of Markovian variables extends beyond games and can be applied to various fields such as economics, genetics, and computer science. For instance, in finance, stock prices can be modeled as Markovian variables where the future price of a stock is predicted based on its current price, ignoring the historical price movements. This assumption can simplify trading strategies and risk assessments, although it may not always capture the complexities of real-world financial markets.In genetics, the inheritance of traits can also be modeled using Markovian variables. Each generation's traits can be viewed as a Markovian variable influenced by the traits of the preceding generation. This approach helps researchers understand the probabilities of certain traits appearing in future generations, facilitating studies on evolution and genetic variation.Moreover, in computer science, algorithms that rely on Markovian variables are widely used in areas like machine learning and artificial intelligence. Markov decision processes (MDPs), which utilize Markovian variables, are employed to make decisions in uncertain environments. These processes help in developing strategies for optimal decision-making by considering the current state and potential future states.Despite the advantages of using Markovian variables, it is crucial to recognize their limitations. The assumption that future states depend only on the present state may not hold true in all situations, particularly in systems with memory or when past events significantly influence future outcomes. Therefore, while Markovian variables provide a powerful framework for modeling and prediction, one must carefully assess the appropriateness of this model for specific applications.In conclusion, the study of Markovian variables offers valuable insights into various stochastic processes across multiple disciplines. By focusing on the present state to predict future outcomes, Markovian variables simplify complex systems and enhance our understanding of probabilistic behavior. However, it is essential to remain aware of their limitations and ensure that their application is suitable for the context in which they are used. As we continue to explore the intricacies of randomness and uncertainty, Markovian variables will undoubtedly play a vital role in advancing our knowledge and methodologies in diverse fields.
在概率论和统计学的领域中,理解像马尔可夫变量这样的概念对于分析随机过程至关重要。马尔可夫变量指的是一种随机变量,它具有马尔可夫性质,即一个过程的未来状态仅依赖于其当前状态,而不依赖于过去的状态。这一特性简化了复杂系统的建模,并使得基于当前信息预测未来结果变得更加容易。为了说明马尔可夫变量的重要性,可以考虑一个简单的棋盘游戏的例子,其中玩家根据掷骰子的结果进行移动。玩家在棋盘上的位置可以表示为马尔可夫变量。在这个场景中,玩家的下一个位置仅由当前的位置和骰子的结果决定,而不受之前位置的影响。这说明了马尔可夫性质如何使我们能够仅关注当前状态,以便对未来进行预测。马尔可夫变量的概念不仅限于游戏,还可以应用于经济学、遗传学和计算机科学等多个领域。例如,在金融领域,股票价格可以建模为马尔可夫变量,其中股票的未来价格是基于当前价格进行预测的,而忽略历史价格的变动。这一假设可以简化交易策略和风险评估,尽管它可能并不能完全捕捉到现实金融市场的复杂性。在遗传学中,性状的遗传也可以使用马尔可夫变量进行建模。每一代的性状可以看作是受前一代性状影响的马尔可夫变量。这种方法帮助研究人员理解某些性状在未来几代中出现的概率,从而促进对进化和遗传变异的研究。此外,在计算机科学中,依赖于马尔可夫变量的算法广泛应用于机器学习和人工智能等领域。利用马尔可夫变量的马尔可夫决策过程(MDP)被用于在不确定环境中做出决策。这些过程有助于通过考虑当前状态和潜在的未来状态来制定最佳决策策略。尽管使用马尔可夫变量具有优势,但必须认识到它们的局限性。未来状态仅依赖于当前状态的假设并不总是在所有情况下成立,特别是在具有记忆的系统中,或者当过去事件显著影响未来结果时。因此,尽管马尔可夫变量为建模和预测提供了强大的框架,但必须仔细评估此模型在特定应用中的适用性。总之,研究马尔可夫变量为多个学科中的各种随机过程提供了宝贵的见解。通过关注当前状态以预测未来结果,马尔可夫变量简化了复杂系统,并增强了我们对概率行为的理解。然而,保持对其局限性的意识并确保其应用适合所用上下文至关重要。随着我们继续探索随机性和不确定性的复杂性,马尔可夫变量无疑将在推动我们在不同领域的知识和方法论方面发挥重要作用。
相关单词