mean reflectance

简明释义

平均反射率;

英英释义

Mean reflectance refers to the average amount of light reflected from a surface over a specific wavelength range or spectrum.

平均反射率是指在特定波长范围或光谱上,从表面反射的光的平均量。

例句

1.In remote sensing, the mean reflectance 平均反射率 is crucial for identifying different land cover types.

在遥感中,mean reflectance 平均反射率对于识别不同的土地覆盖类型至关重要。

2.The satellite imagery analysis revealed a high mean reflectance 平均反射率 in the forested areas, indicating healthy vegetation.

卫星图像分析显示,森林地区的mean reflectance 平均反射率很高,这表明植被健康。

3.By comparing the mean reflectance 平均反射率 of crops over seasons, farmers can optimize their planting strategies.

通过比较季节间作物的mean reflectance 平均反射率,农民可以优化他们的种植策略。

4.The mean reflectance 平均反射率 values were used to assess the impact of urbanization on local climate.

这些mean reflectance 平均反射率值被用来评估城市化对当地气候的影响。

5.Researchers calculated the mean reflectance 平均反射率 of the ocean surface to study its color variations.

研究人员计算了海洋表面的mean reflectance 平均反射率以研究其颜色变化。

作文

In the field of remote sensing and environmental science, the concept of mean reflectance plays a crucial role in understanding how different surfaces interact with sunlight. Mean reflectance refers to the average amount of light that is reflected off a surface compared to the amount of light that is incident upon it. This measurement is essential for various applications, including land cover classification, vegetation analysis, and climate studies.To grasp the importance of mean reflectance, one must first understand the process of reflection. When sunlight hits a surface, part of the light is absorbed, part is transmitted, and part is reflected. The ratio of the reflected light to the incident light gives us the reflectance value. By calculating the mean reflectance over a specific area or time period, researchers can obtain a more accurate representation of the surface characteristics.For instance, consider a forested area. Different types of vegetation will have varying mean reflectance values due to differences in leaf structure, color, and moisture content. By analyzing these values, scientists can distinguish between types of vegetation, assess plant health, and monitor changes over time. This information is invaluable for ecologists and conservationists who aim to preserve biodiversity and manage natural resources effectively.Moreover, mean reflectance is not only applicable to vegetation but also to urban areas and water bodies. Urban surfaces, such as concrete and asphalt, typically have lower mean reflectance values compared to natural landscapes, which can influence local climate conditions, such as heat islands. In contrast, water bodies often exhibit very high reflectance in certain wavelengths, which can be used to assess water quality and monitor pollution levels.The calculation of mean reflectance is facilitated by remote sensing technologies, such as satellites and aerial imaging. These tools capture images of the Earth's surface in various spectral bands, allowing researchers to analyze how different materials reflect light. By processing this data and applying algorithms, scientists can derive the mean reflectance values for different surfaces across large geographical areas.Furthermore, understanding mean reflectance contributes to climate modeling and predicting changes in the environment. For example, as global temperatures rise, the reflectance characteristics of ice and snow are altered, leading to increased absorption of solar energy and accelerated melting. Monitoring these changes through mean reflectance measurements can provide critical insights into climate change impacts and help inform policy decisions aimed at mitigating its effects.In conclusion, the concept of mean reflectance is fundamental in the fields of remote sensing and environmental science. It provides essential data for understanding surface properties, monitoring ecological changes, and assessing environmental health. As technology continues to advance, the ability to measure and analyze mean reflectance will become even more sophisticated, offering deeper insights into our planet's dynamics and aiding in the sustainable management of natural resources.

在遥感和环境科学领域,平均反射率的概念在理解不同表面如何与阳光相互作用方面起着至关重要的作用。平均反射率是指反射在表面上反射的光的平均量与照射在其上的光的量的比率。这一测量对于土地覆盖分类、植被分析和气候研究等各种应用至关重要。要理解平均反射率的重要性,首先必须了解反射的过程。当阳光照射到一个表面时,部分光被吸收,部分光被透过,部分光被反射。反射光与入射光的比率给出了反射率的值。通过计算特定区域或时间段的平均反射率,研究人员可以获得对表面特征的更准确的表示。例如,考虑一个森林地区。由于叶片结构、颜色和水分含量的差异,不同类型的植被将具有不同的平均反射率值。通过分析这些值,科学家可以区分植被类型,评估植物健康状况,并监测随时间的变化。这些信息对生态学家和保护主义者来说是无价的,他们旨在保护生物多样性和有效管理自然资源。此外,平均反射率不仅适用于植被,还适用于城市地区和水体。城市表面,如混凝土和沥青,通常具有较低的平均反射率值,与自然景观相比,这可能会影响当地气候条件,例如热岛效应。相比之下,水体在某些波长上通常表现出非常高的反射率,这可以用来评估水质和监测污染水平。平均反射率的计算得益于遥感技术,如卫星和航空成像。这些工具捕捉地球表面在各种光谱波段的图像,使研究人员能够分析不同材料的光反射特性。通过处理这些数据并应用算法,科学家可以推导出不同表面的平均反射率值,覆盖大范围的地理区域。此外,理解平均反射率有助于气候建模和预测环境变化。例如,随着全球温度的上升,冰雪的反射特性发生变化,导致太阳能的吸收增加和融化加速。通过平均反射率测量监测这些变化可以提供对气候变化影响的关键见解,并帮助制定旨在减轻其影响的政策决策。总之,平均反射率的概念在遥感和环境科学领域中是基础性的。它为理解表面特性、监测生态变化和评估环境健康提供了必要的数据。随着技术的不断进步,测量和分析平均反射率的能力将变得更加复杂,为深入了解我们星球的动态提供更深刻的见解,并有助于可持续管理自然资源。

相关单词

reflectance

reflectance详解:怎么读、什么意思、用法