hydrodynamical

简明释义

[/ˌhaɪdroʊdaɪˈnæmɪkəl/][/ˌhaɪdroʊdaɪˈnæmɪkəl/]

adj. 流体的,流动的

英英释义

Relating to the branch of physics that deals with the motion of fluids, particularly liquids, and the forces acting on them.

与流体(特别是液体)运动及其所受力的物理学分支相关。

单词用法

同义词

fluid dynamics

流体动力学

Fluid dynamics is essential for understanding the behavior of liquids and gases in motion.

流体动力学对于理解液体和气体的运动行为至关重要。

hydraulic

液压的

Hydraulic systems utilize hydrodynamical principles to operate machinery.

液压系统利用水动力学原理来操作机械。

aerohydrodynamic

气动水动力的

Aerohydrodynamic studies help improve the design of vehicles for better performance.

气动水动力学研究有助于改善车辆设计以提高性能。

反义词

static

静态的

The static pressure in the system is crucial for maintaining stability.

系统中的静态压力对于维持稳定性至关重要。

solid

固体的

Solid mechanics deals with the behavior of solid materials under various forces.

固体力学研究固体材料在各种力作用下的行为。

例句

1.Based on this theory, we designed a three-dimensional, non-linear hydrodynamical model.

在此理论的基础上建立了一个三维非线性水动力学数学模型。

2.The hydrodynamical section of karst reflects the conditions of karst water bury and runoff in var-ious hydrogeological structures as well as hydrodynamical characteristics.

喀斯特水动力剖面模式反映各类水文地质结构中喀斯特水的埋藏、迳流条件和水动力特点。

3.The analysis of joints occurrence in rock mass is an important basic work for mechanical and hydrodynamical behaviors analysis of rock mass.

在岩体的力学和水力学分析中,岩体结构面产状的分析是极为重要的基础工作。

4.Hydrodynamical pressure in swiftly flowing water and the problem of its model laws are very interested recently.

水流脉动压力及其模型律问题,近来得到广泛的注意。

5.A hydrodynamical model for oilspill simulation in archipelagic waters with multiple open boundary conditions is set up and simulation/forecast tests in Zhoushan dingpu Port are performed.

建立了一个多开边界群岛海域溢油模拟的三维水动力模式,并在舟山定普港域作了模拟和预报试验。

6.A hydrodynamical model for oilspill simulation in archipelagic waters with multiple open boundary conditions is set up and simulation/forecast tests in Zhoushan dingpu Port are performed.

建立了一个多开边界群岛海域溢油模拟的三维水动力模式,并在舟山定普港域作了模拟和预报试验。

7.Engineers use hydrodynamical 流体动力学的 models to predict how water will interact with structures during floods.

工程师使用流体动力学的模型来预测洪水期间水与结构的相互作用。

8.Understanding hydrodynamical 流体动力学的 principles is essential for designing efficient ships.

理解流体动力学的原理对于设计高效的船只至关重要。

9.The study focused on hydrodynamical 流体动力学的 forces acting on submerged objects.

研究集中在作用于水下物体的流体动力学的力。

10.The researchers conducted a series of experiments to analyze the hydrodynamical 流体动力学的 behavior of the water flow in the new canal design.

研究人员进行了一系列实验,以分析新运河设计中水流的流体动力学的行为。

11.The hydrodynamical 流体动力学的 simulations revealed unexpected turbulence patterns in the ocean currents.

流体动力学的模拟显示了海洋洋流中意想不到的湍流模式。

作文

The study of fluids and their movement is a fundamental aspect of physics and engineering. One of the key areas in this field is hydrodynamical (流体动力学的) analysis, which focuses on understanding the behavior of liquids in motion. This branch of science plays a crucial role in various applications, from designing efficient ships and submarines to predicting weather patterns and managing water resources. Understanding hydrodynamical (流体动力学的) principles allows engineers and scientists to create models that can simulate real-world scenarios, leading to more effective solutions to complex problems.In the context of naval engineering, hydrodynamical (流体动力学的) studies are essential for optimizing the design of vessels. For instance, the shape of a ship's hull significantly affects its performance in water. By applying hydrodynamical (流体动力学的) theories, engineers can minimize resistance and enhance speed, making ships more fuel-efficient and capable of carrying larger loads. Furthermore, understanding the flow of water around a vessel helps prevent issues such as cavitation, which can damage propellers and reduce operational efficiency.Another important application of hydrodynamical (流体动力学的) principles is in the field of environmental science. Rivers, lakes, and oceans are constantly in motion, influenced by various factors such as wind, temperature, and human activities. By studying these hydrodynamical (流体动力学的) processes, researchers can predict the dispersion of pollutants, assess the impact of climate change on aquatic ecosystems, and develop strategies for sustainable water management. This knowledge is vital for protecting our natural resources and ensuring the health of our planet.In addition to practical applications, hydrodynamical (流体动力学的) research contributes to our theoretical understanding of fluid mechanics. Scientists explore fundamental questions about turbulence, wave propagation, and the interaction between fluids and solid boundaries. These investigations not only deepen our comprehension of physical phenomena but also inspire innovations in technology. For example, advancements in hydrodynamical (流体动力学的) modeling have led to improved designs in various industries, including aerospace and automotive engineering.Moreover, the relevance of hydrodynamical (流体动力学的) studies extends beyond traditional engineering fields. In medicine, understanding fluid dynamics is crucial for developing medical devices such as artificial hearts and blood flow monitors. The principles of hydrodynamical (流体动力学的) behavior help ensure these devices function effectively within the human body, where blood flow is a critical factor in overall health.In conclusion, the significance of hydrodynamical (流体动力学的) studies cannot be overstated. From enhancing the design of maritime vessels to addressing environmental challenges and advancing medical technology, the insights gained from hydrodynamical (流体动力学的) research are invaluable. As we continue to explore the complexities of fluid motion, we unlock new possibilities for innovation and sustainability in our world. Therefore, investing in hydrodynamical (流体动力学的) research is essential for fostering progress across multiple disciplines, ultimately benefiting society as a whole.

流体及其运动的研究是物理学和工程学的一个基础方面。这个领域的一个关键领域是hydrodynamical(流体动力学的)分析,重点关注理解液体在运动中的行为。科学的这一分支在许多应用中发挥着至关重要的作用,从设计高效的船舶和潜艇到预测天气模式以及管理水资源。理解hydrodynamical(流体动力学的)原理使工程师和科学家能够创建可以模拟现实世界场景的模型,从而为复杂问题提供更有效的解决方案。在海军工程的背景下,hydrodynamical(流体动力学的)研究对于优化船只设计至关重要。例如,船体的形状显著影响其在水中的性能。通过应用hydrodynamical(流体动力学的)理论,工程师可以最小化阻力,增强速度,使船只更节能,并能够承载更大的负荷。此外,了解水流围绕船只的流动有助于防止诸如气蚀等问题,这可能会损坏螺旋桨并降低操作效率。hydrodynamical(流体动力学的)原理的另一个重要应用是环境科学领域。河流、湖泊和海洋不断运动,受到风、温度和人类活动等各种因素的影响。通过研究这些hydrodynamical(流体动力学的)过程,研究人员可以预测污染物的扩散,评估气候变化对水生生态系统的影响,并制定可持续水资源管理的策略。这些知识对于保护我们的自然资源和确保我们星球的健康至关重要。除了实际应用外,hydrodynamical(流体动力学的)研究还促进了我们对流体力学的理论理解。科学家探索关于湍流、波传播和流体与固体边界之间相互作用的基本问题。这些调查不仅加深了我们对物理现象的理解,还激发了技术创新。例如,hydrodynamical(流体动力学的)建模的进步导致各个行业(包括航空航天和汽车工程)的改进设计。此外,hydrodynamical(流体动力学的)研究的相关性超出了传统工程领域。在医学中,理解流体动力学对于开发医疗设备(例如人工心脏和血流监测器)至关重要。hydrodynamical(流体动力学的)行为原理有助于确保这些设备在人体内有效运作,而血流是整体健康的重要因素。总之,hydrodynamical(流体动力学的)研究的重要性不容小觑。从增强海事船只的设计到应对环境挑战和推进医疗技术,从hydrodynamical(流体动力学的)研究中获得的见解都是无价的。随着我们继续探索流体运动的复杂性,我们为创新和可持续发展解锁了新的可能性。因此,投资于hydrodynamical(流体动力学的)研究对于促进多个学科的进步至关重要,最终将惠及整个社会。