plasmas
简明释义
n. [等离子]等离子体(plasma 的复数)
英英释义
单词用法
等离子弧,等离子体电弧;电浆弧 | |
等离子喷涂 |
同义词
电离气体 | 等离子体常见于恒星中,包括太阳。 | ||
高能态物质 | Ionized gases can be used in fluorescent lights and plasma TVs. | 电离气体可用于荧光灯和等离子电视。 |
反义词
固体 | 冰是一种固体,受热时可以变成液体。 | ||
液体 | 水是一种液体,可以凝固成固体冰。 |
例句
1.This paper investigates the stealth of target by nonuniform unmagnetized plasmas.
研究了不均匀非磁化等离子体片的目标隐身。
2.Explosive mode coupling of low frequency interchange instability in partially ionized plasmas is studied.
本文研究部分电离等离子体中交换不稳定性的爆炸型模耦合。
3.Plasmas engineered to zap microorganisms aren't new.
利用等离子体来杀灭微生物并不是新鲜事。
4.The project currently hosts the ISDEP - Integrator of Stochastic Differential Equations in Plasmas - application.
项目研究的是ISDEP(等离子体的随机微分方程)的应用。
5.But cold plasmas can be made using high electrical voltages.
低温等离子体可以通过高电压获得。
6.A special kind of internal kink mode, the fishbone, can be excited by the energetic particles in tokamak plasmas.
在托卡马克等离子体中,高能粒子可以激发一种称为鱼骨模的内扭曲模。
7.Cold plasmas are closer to room temperatures.
冷等离子体更接近室温。
8.And He2 plus is observed in helium plasmas at high pressure, He2 but not neutral He2.
因此he2 +能在高压的氦气等离子体中,被观察到,而不是中性的。
9.The neon lights work by exciting plasmas (等离子体) inside the tubes.
霓虹灯通过激发管内的plasmas(等离子体)来工作。
10.In the universe, stars are essentially massive balls of plasmas (等离子体) held together by gravity.
在宇宙中,星星本质上是由重力维持的巨大plasmas(等离子体)球。
11.Plasma TVs use plasmas (等离子体) to create vibrant images.
等离子电视使用plasmas(等离子体)来创建生动的图像。
12.In the lab, scientists can manipulate plasmas (等离子体) for various experiments.
在实验室里,科学家可以操控plasmas(等离子体)进行各种实验。
13.Researchers are studying plasmas (等离子体) to develop better fusion energy sources.
研究人员正在研究plasmas(等离子体),以开发更好的聚变能源来源。
作文
In the vast realm of science, few topics are as fascinating and complex as the study of matter in its various forms. Among these forms, plasmas (等离子体) stand out as a unique state that captivates both researchers and enthusiasts alike. A plasma is often described as an ionized gas, where a significant number of electrons are not bound to atoms, allowing for a mixture of charged particles. This state of matter is not only abundant in the universe but also plays a crucial role in many technological applications on Earth.One of the most prominent examples of plasmas (等离子体) can be found in stars, including our very own sun. The sun is essentially a massive ball of plasma (等离子体), where nuclear fusion occurs under extreme temperatures and pressures. This process releases vast amounts of energy, which is essential for life on Earth. Understanding the properties and behaviors of plasmas (等离子体) helps scientists unlock the secrets of stellar formation and evolution, providing insights into how the universe operates.On Earth, plasmas (等离子体) are utilized in various technologies. For instance, fluorescent lights and plasma televisions rely on plasma (等离子体) technology to produce light and images. In these devices, gas is ionized to create plasma (等离子体), which emits light when energized. Furthermore, plasmas (等离子体) are employed in the field of materials science for processes like plasma etching and deposition, which are essential in semiconductor manufacturing.The medical field has also seen advancements through the use of plasmas (等离子体). Plasma medicine is an emerging area that explores the therapeutic applications of plasmas (等离子体) for wound healing and sterilization. The unique properties of plasmas (等离子体), such as their ability to kill bacteria and promote tissue regeneration, open up new avenues for treatment and recovery.Despite the numerous benefits and applications of plasmas (等离子体), they also present challenges. Managing plasmas (等离子体) requires advanced technology and understanding of their behavior under different conditions. Researchers are continuously exploring ways to harness plasmas (等离子体) for controlled fusion energy, which could provide a nearly limitless source of clean energy. However, achieving stable and sustained plasma (等离子体) confinement remains one of the significant hurdles in this field.In conclusion, plasmas (等离子体) are a remarkable state of matter with diverse applications and implications. From the stars in the sky to the screens in our homes and potential breakthroughs in medicine, the study of plasmas (等离子体) continues to inspire curiosity and innovation. As we delve deeper into the mysteries of plasmas (等离子体), we not only expand our understanding of the universe but also pave the way for future technological advancements that could transform our lives.
在科学的广阔领域中,很少有主题像物质的各种形态研究那样引人入胜和复杂。在这些形态中,plasmas(等离子体)作为一种独特的状态脱颖而出,吸引着研究人员和爱好者的关注。Plasma 通常被描述为一种电离气体,其中大量电子不与原子结合,允许形成带电粒子的混合物。这种物质状态不仅在宇宙中丰富存在,而且在地球上的许多技术应用中也发挥着至关重要的作用。最显著的 plasmas(等离子体)例子可以在恒星中找到,包括我们自己的太阳。太阳本质上是一个巨大的 plasma(等离子体)球体,在极端温度和压力下发生核聚变。这个过程释放出大量能量,这对地球上的生命至关重要。理解 plasmas(等离子体)的性质和行为帮助科学家揭开恒星形成与演化的秘密,为我们提供了关于宇宙如何运作的见解。在地球上,plasmas(等离子体)被用于各种技术。例如,荧光灯和等离子电视依赖于 plasma(等离子体)技术来产生光和图像。在这些设备中,气体被电离以创建 plasma(等离子体),当其受到激励时会发出光。此外,plasmas(等离子体)还在材料科学领域中用于等离子刻蚀和沉积等工艺,这些工艺对半导体制造至关重要。医学领域也通过使用 plasmas(等离子体)取得了进展。等离子医学是一个新兴领域,探索 plasmas(等离子体)在伤口愈合和灭菌中的治疗应用。Plasmas(等离子体)的独特性质,例如它们杀死细菌和促进组织再生的能力,为治疗和康复开辟了新的途径。尽管 plasmas(等离子体)有许多好处和应用,但它们也带来了挑战。管理 plasmas(等离子体)需要先进的技术和对其在不同条件下行为的理解。研究人员正在不断探索利用 plasmas(等离子体)进行受控核聚变能量的方法,这可能提供几乎无限的清洁能源。然而,实现稳定和持续的 plasma(等离子体)约束仍然是该领域面临的重大障碍之一。总之,plasmas(等离子体)是一种具有多样应用和影响的显著物质状态。从天空中的星星到我们家中的屏幕,以及潜在的医学突破,plasmas(等离子体)的研究继续激发好奇心和创新。当我们深入探索 plasmas(等离子体)的奥秘时,我们不仅扩展了对宇宙的理解,还为未来可能改变我们生活的技术进步铺平了道路。