chalcogenides

简明释义

[ˈkæl.kə.dʒə.naɪdz][ˈkæl.kə.dʒə.naɪdz]

n. [无化]硫属化合物(chalcogenide 的复数形式)

英英释义

Chalcogenides are compounds that contain one or more chalcogen elements, which include sulfur, selenium, tellurium, and polonium, typically combined with metals or metalloids.

硫族化合物是含有一种或多种硫族元素的化合物,这些元素包括硫、硒、碲和钋,通常与金属或类金属结合。

单词用法

metal chalcogenides

金属硫族化合物

chalcogenide compounds

硫族化合物

transition metal chalcogenides

过渡金属硫族化合物

synthesis of chalcogenides

硫族化合物的合成

chalcogenide thin films

硫族化合物薄膜

chalcogenide materials

硫族材料

同义词

chalcogen compounds

硫族化合物

Chalcogenides are widely studied for their semiconductor properties.

硫族化合物因其半导体特性而被广泛研究。

chalcogenide semiconductors

硫族半导体

Many chalcogen compounds exhibit interesting optical and electronic properties.

许多硫族化合物表现出有趣的光学和电子特性。

反义词

metalloids

类金属

Metalloids are used in semiconductor technology.

类金属被用于半导体技术。

noble gases

惰性气体

Noble gases are often used in lighting and welding.

惰性气体常用于照明和焊接。

例句

1.Further, these chalcogenides glasses can be deposited in an amorphous thin film for optical coatings or waveguides.

硫系玻璃可被镀在用于光学薄膜和波导的非晶形膜上。

2.Metal chalcogenides are important functional materials with wide applications in the optical, electronic and optoelectronic field.

金属硫族化合物是一类重要的功能材料,在光学、电子学及光电领域都有着重要的应用。

3.Some results of our research on chain like early transition metal chalcogenides in the last decade are briefly summarized.

总结了我们此前开展链状结构前过渡金属硫属化合物结构研究的结果。

4.Metal chalcogenides are important functional materials with wide applications in the optical, electronic and optoelectronic field.

金属硫族化合物是一类重要的功能材料,在光学、电子学及光电领域都有着重要的应用。

5.In particular, they are working on a group of chemicals called chalcogenides.

具体来说,他们就是在研究一种叫做“硫系化合物”的化学品,其成分包括氧、硫、砷、碲。

6.The synthesis of chalcogenides 硫族元素化合物 can be achieved through various chemical methods, including vapor deposition.

可以通过多种化学方法(包括气相沉积)合成chalcogenides 硫族元素化合物

7.Researchers are exploring the electronic properties of chalcogenides 硫族元素化合物 for use in next-generation semiconductors.

研究人员正在探索chalcogenides 硫族元素化合物的电子特性,以用于下一代半导体。

8.The study of chalcogenides 硫族元素化合物 has gained significant attention in the field of materials science.

chalcogenides 硫族元素化合物的研究在材料科学领域引起了重大关注。

9.In solar cell technology, chalcogenides 硫族元素化合物 like CdTe have been widely used due to their efficient light absorption.

在太阳能电池技术中,像CdTe这样的chalcogenides 硫族元素化合物因其高效的光吸收而被广泛使用。

10.Some chalcogenides 硫族元素化合物 exhibit unique optical properties that make them suitable for photonic applications.

某些chalcogenides 硫族元素化合物表现出独特的光学特性,使它们适合用于光子应用。

作文

Chalcogenides, which are compounds formed between chalcogen elements and more electropositive elements, play a significant role in various fields of science and technology. The term 'chalcogen' refers to the group of elements in Group 16 of the periodic table, which includes oxygen, sulfur, selenium, tellurium, and polonium. These elements are known for their ability to form bonds with metals and nonmetals, leading to the creation of a wide range of materials known as chalcogenides (硫族化合物). One of the most intriguing aspects of chalcogenides (硫族化合物) is their unique electronic properties. Many chalcogenides (硫族化合物), such as transition metal dichalcogenides (TMDs), exhibit semiconducting behavior, making them ideal candidates for use in electronic devices. For instance, materials like molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) have garnered significant attention for their potential applications in transistors, photodetectors, and even flexible electronics. The ability to control their electronic properties through external stimuli, such as electric fields or strain, is particularly appealing for future technological advancements.Moreover, chalcogenides (硫族化合物) also show promise in the field of optoelectronics. Their tunable band gaps allow for the absorption and emission of light at various wavelengths, making them suitable for applications in solar cells and light-emitting devices. Researchers are exploring the use of chalcogenides (硫族化合物) in tandem solar cells to enhance efficiency by utilizing a broader spectrum of sunlight. This innovation could lead to more effective solar energy conversion systems, contributing to the global shift towards renewable energy sources.In addition to their electronic and optical properties, chalcogenides (硫族化合物) are also important in the realm of thermoelectrics. These materials can convert temperature differences into electrical voltage, making them valuable for energy harvesting applications. Certain chalcogenides (硫族化合物), like bismuth telluride (Bi2Te3), are already used in commercial thermoelectric devices for cooling and power generation. The ongoing research aims to discover new chalcogenides (硫族化合物) with enhanced thermoelectric performance, which could lead to more efficient energy solutions.However, despite their promising applications, the synthesis and processing of chalcogenides (硫族化合物) can be challenging. The methods to fabricate these materials often require precise control over conditions such as temperature and pressure. Advances in nanotechnology and material science are helping to overcome these challenges, enabling the development of high-quality chalcogenides (硫族化合物) at lower costs. Techniques such as chemical vapor deposition (CVD) and molecular beam epitaxy (MBE) are being utilized to create thin films of chalcogenides (硫族化合物) with controlled thickness and uniformity.In conclusion, chalcogenides (硫族化合物) represent a fascinating class of materials with a wide array of applications in electronics, optoelectronics, and thermoelectrics. Their unique properties make them essential for advancing technology in various sectors. As research continues to explore the potential of chalcogenides (硫族化合物), we can expect to see innovative solutions that harness their capabilities for a sustainable and technologically advanced future.

硫族化合物是由硫族元素与更具电正性的元素形成的化合物,在科学和技术的各个领域都发挥着重要作用。 "硫族"一词指的是周期表第16族的元素,包括氧、硫、硒、碲和钋。这些元素因其与金属和非金属形成化合物的能力而闻名,导致了广泛材料的创建,称为chalcogenides(硫族化合物)。chalcogenides(硫族化合物)最引人注目的方面之一是它们独特的电子特性。许多chalcogenides(硫族化合物),例如过渡金属二硫化物(TMDs),表现出半导体行为,使其成为电子设备的理想候选者。例如,像二硫化钼(MoS2)和二硒化钨(WSe2)这样的材料因其在晶体管、光探测器甚至柔性电子设备中的潜在应用而受到广泛关注。通过外部刺激(如电场或应变)控制其电子特性的能力,对于未来技术进步尤为吸引人。此外,chalcogenides(硫族化合物)在光电电子学领域也展现出潜力。它们可调的带隙允许在不同波长下吸收和发射光,使其适用于太阳能电池和发光设备的应用。研究人员正在探索在串联太阳能电池中使用chalcogenides(硫族化合物)以通过利用更广泛的阳光光谱来提高效率。这一创新可能导致更有效的太阳能转化系统,为全球向可再生能源的转变做出贡献。除了电子和光学特性外,chalcogenides(硫族化合物)在热电领域也很重要。这些材料可以将温差转化为电压,使其在能量收集应用中具有价值。某些chalcogenides(硫族化合物),如碲化铋(Bi2Te3),已经在商业热电设备中用于冷却和发电。正在进行的研究旨在发现新型chalcogenides(硫族化合物),以提高热电性能,这可能导致更高效的能源解决方案。然而,尽管有前景,但合成和加工chalcogenides(硫族化合物)可能具有挑战性。制造这些材料的方法通常需要对温度和压力等条件进行精确控制。纳米技术和材料科学的进步正在帮助克服这些挑战,使得以更低的成本开发高质量的chalcogenides(硫族化合物)成为可能。化学气相沉积(CVD)和分子束外延(MBE)等技术被用来创建具有受控厚度和均匀性的chalcogenides(硫族化合物)薄膜。总之,chalcogenides(硫族化合物)代表了一类迷人的材料,在电子学、光电电子学和热电学等多个领域具有广泛的应用。它们独特的特性使它们在各个行业中对推动技术进步至关重要。随着研究继续探索chalcogenides(硫族化合物)的潜力,我们可以期待看到利用其能力的创新解决方案,为可持续和技术先进的未来铺平道路。