interparticle
简明释义
英[ˌɪntəˈpɑːtɪkəl]美[ˌɪntərˈpɑrtɪkəl]
adj. 粒子间的;颗粒间的
英英释义
与粒子之间相关或发生的。 |
单词用法
粒子间距 | |
粒子间势能 | |
粒子间距离 | |
粒子间的凝聚力 |
同义词
反义词
例句
1.It is shown that the changes of is resulted from the changes of both apparent porosity and the distance between layers of gel-type montmorillonite in interparticle pores.
结果表明,膨润土饱和渗透系数的变化是由表观孔隙率和凝胶体蒙脱石层间距离的共同作用引起的。
2.Both the red shift of the plasmon absorption band and the SERS effect result from the interparticle interactions of gold nanoparticles within the films.
吸收峰红移及SERS效应与薄膜中的金纳米粒子间的电磁耦合作用有关。
3.The energy equipartition time is longer than the interparticle collision time by the mass ratio of proton and electron.
由于质子与电子的质量比很大,能量平衡时间比粒子间碰撞时间长。
4.Our experimental results show that the anomalous magnetic properties are due to the non-uniform particle size distribution, random surface anisotropy and interparticle interactions in the films.
研究表明,这一奇异的矫顽力特性与液相基底表面铁薄膜中的原子团簇尺寸分布、无序的薄膜表面磁各向异性以及团簇间的磁性相互作用等因素有关。
5.Our experimental results show that the anomalous magnetic properties are due to the non-uniform particle size distribution, random surface anisotropy and interparticle interactions in the films.
研究表明,这一奇异的矫顽力特性与液相基底表面铁薄膜中的原子团簇尺寸分布、无序的薄膜表面磁各向异性以及团簇间的磁性相互作用等因素有关。
6.It was shown that at all stages of unloading, interparticle sliding occurred, the number of interparticle contacts reduced and irrecoverable deformation of the microstructure occurred.
通过对这些参数的研究表明:在卸载的全过程中,颗粒间相对滑移出现,相互作用的颗粒数减少,系统内部结构产生不可恢复变形。
7.The pore structures of catalyst influence interparticle diffusion which mainly determines the effectiveness factor.
催化剂的孔结构对有效因子有很大影响。
8.The sharp brittle-tough transition is observed at a critical interparticle distance when the content of elastomer is relatively high.
当弹性体的含量高到一定程度,分散相的粒间距达到临界值,则发生明显的脆韧转变。
9.Results indicated that the sedimentation of interacting particles is more complex than "hard sphere" case and interparticle potential affects the particles' settling heavily.
结果表明,具势粒子系统的沉降较硬粒子情况更为复杂。
10.In nanotechnology, understanding interparticle 粒子间 interactions is crucial for developing new materials.
在纳米技术中,理解粒子间相互作用对开发新材料至关重要。
11.The researchers measured the interparticle 粒子间 distance using advanced microscopy techniques.
研究人员使用先进的显微镜技术测量了粒子间距离。
12.Simulation models can predict the behavior of interparticle 粒子间 forces in various environments.
模拟模型可以预测在不同环境中粒子间力的行为。
13.The study focused on the interparticle 粒子间 forces that influence the stability of the colloidal suspension.
该研究集中于影响胶体悬浮液稳定性的粒子间力。
14.The interparticle 粒子间 spacing affects the optical properties of the material.
粒子间间距会影响材料的光学性质。
作文
In the realm of physics and materials science, the term interparticle refers to the interactions that occur between particles within a given medium. These particles can be atoms, molecules, or larger entities such as grains in a solid material. Understanding interparticle forces is crucial for predicting the behavior of materials under various conditions. For instance, when studying a solid, the interparticle interactions determine the material's strength, ductility, and thermal properties. The nature of interparticle forces can vary significantly depending on the type of particles involved and their arrangement. In gases, the interparticle forces are relatively weak, allowing particles to move freely and occupy the entire volume of their container. This is in stark contrast to solids, where interparticle forces are much stronger, keeping the particles closely packed together and restricting their movement. A classic example of interparticle interactions can be seen in colloidal systems, where tiny particles are dispersed in a fluid. The stability of these colloids depends heavily on the interparticle forces at play. If the attractive forces between the particles become too strong, they may aggregate and settle out of the solution. Conversely, if repulsive forces dominate, the particles will remain suspended. This delicate balance is vital for applications in various industries, including pharmaceuticals and food science, where maintaining a stable colloid is essential for product efficacy and quality. Moreover, the concept of interparticle forces extends beyond traditional materials science into areas like nanotechnology. At the nanoscale, the interparticle interactions can lead to unique properties that differ significantly from their bulk counterparts. For example, nanoparticles often exhibit enhanced catalytic activity due to the increased surface area and altered interparticle forces compared to larger particles. Understanding these interactions allows scientists to design better catalysts and improve the efficiency of chemical reactions. In conclusion, the study of interparticle interactions is fundamental to many scientific disciplines. It provides insights into how materials behave and interact at the microscopic level. By exploring the nuances of interparticle forces, researchers can develop new materials with tailored properties for specific applications. As we continue to advance our understanding of these interactions, the potential for innovation in fields ranging from medicine to engineering becomes increasingly apparent. In summary, interparticle (粒子间的) interactions are pivotal in determining the characteristics and behaviors of various materials. From the stability of colloids to the unique properties of nanomaterials, the significance of interparticle forces cannot be overstated. As research progresses, the implications of these interactions will undoubtedly lead to exciting advancements in technology and materials science.
在物理学和材料科学领域,术语interparticle指的是在给定介质中粒子之间发生的相互作用。这些粒子可以是原子、分子或更大的实体,如固体材料中的颗粒。理解interparticle力对于预测材料在各种条件下的行为至关重要。例如,在研究固体时,interparticle相互作用决定了材料的强度、延展性和热性能。interparticle力的性质可能会根据所涉及的粒子类型及其排列方式而显著变化。在气体中,interparticle力相对较弱,允许粒子自由移动并占据整个容器的体积。这与固体形成鲜明对比,在固体中,interparticle力要强得多,使粒子紧密地聚集在一起,限制了它们的运动。一个经典的interparticle相互作用的例子可以在胶体系统中看到,其中微小粒子分散在液体中。这些胶体的稳定性在很大程度上取决于所起作用的interparticle力。如果粒子之间的吸引力变得过强,它们可能会聚集并沉淀到溶液中。相反,如果排斥力占主导地位,粒子将保持悬浮状态。这种微妙的平衡对于各个行业的应用至关重要,包括制药和食品科学,在这些领域中,保持胶体的稳定性对产品的有效性和质量至关重要。此外,interparticle力的概念超越了传统的材料科学,延伸到纳米技术等领域。在纳米尺度上,interparticle相互作用可能导致与其块体对应物显著不同的独特性质。例如,由于表面积增大和相对于较大粒子的改变的interparticle力,纳米粒子通常表现出增强的催化活性。理解这些相互作用使科学家能够设计更好的催化剂并提高化学反应的效率。总之,研究interparticle相互作用是许多科学学科的基础。它提供了对材料在微观水平上如何行为和相互作用的洞察。通过探索interparticle力的细微差别,研究人员可以开发出具有特定应用所需特性的新的材料。随着我们对这些相互作用的理解不断加深,医学到工程等领域的创新潜力变得越来越明显。总之,interparticle(粒子间的)相互作用在决定各种材料的特性和行为方面至关重要。从胶体的稳定性到纳米材料的独特性质,interparticle力的重要性不容小觑。随着研究的进展,这些相互作用的影响无疑将导致技术和材料科学领域的激动人心的进步。