heterochromatin

简明释义

[ˌhetərəʊˈkrəʊmətɪn][ˌhetəroˈkromətɪn]

n. [遗] 异染色质

英英释义

A form of chromatin that is densely packed and typically transcriptionally inactive, often found in regions of the genome that are not expressed.

一种密集打包且通常转录不活跃的染色质形式,通常位于基因组中未表达的区域。

单词用法

constitutive heterochromatin

构成性异染色质

facultative heterochromatin

选择性异染色质

pericentromeric heterochromatin

着丝粒旁异染色质

the role of heterochromatin

异染色质的作用

heterochromatin regions

异染色质区域

heterochromatin formation

异染色质形成

同义词

chromatin

染色质

Heterochromatin is a tightly packed form of DNA, which comes in multiple varieties.

异染色质是一种紧密打包的DNA形式,具有多种变体。

euchromatin

常染色质

Euchromatin is typically associated with active gene transcription, unlike heterochromatin.

常染色质通常与活跃的基因转录相关,而异染色质则不同。

反义词

euchromatin

常染色质

Euchromatin is associated with active gene transcription.

常染色质与活跃的基因转录相关。

例句

1.The paper has summarized development of biochemical component and ultrastructure of heterochromatin in eukaryote with an introduction to the development of ultrastructure in centromere.

概述了异染色质生化组成及其在超微结构方面的研究进展,着重介绍了着丝粒的异染色质超微结构研究。

2.The origin of such large amounts of constitutive heterochromatin and their role in karyotype evolution and speciation remain a mystery.

如此大量的结构异染色质的来源及其在染色体组型进化和物种形成中的任务仍是一个谜。

3.The paper has summarized development of biochemical component and ultrastructure of heterochromatin in eukaryote with an introduction to the development of ultrastructure in centromere.

概述了异染色质生化组成及其在超微结构方面的研究进展,着重介绍了着丝粒的异染色质超微结构研究。

4.Chromosome material with exhibits of such behaviour is called heterochromatin.

表现这种现象的染色体物质叫做异染色质。

5.Objective:To analysis the aberration of chromosome 9 heterochromatin for persons suspected to have chromosome abnormalities.

目的分析疑有染色体异常个体的9号染色体异染色质区的变异。

6.Heterochromatin is dynamically regulated during the cell cycle and in response to developmental signals.

在细胞周期中,异染色质会被进行动态的调节,以响应发育信号。

7.It is presumed that the repeated DNA sequences of the heterochromatin near the secondary constriction might be formed gradually in the process of evolution through unequal SCEs.

推测副缢痕附近异染色质的DNA重复序列可能是在进化过程中通过染色单体不均等交换而逐渐形成。

8.What other functions abundant heterochromatin may perform are still an open question.

至于大量的异染色质还有什么作用仍然是一个问题。

9.The results suggest that the Y chromosome heterochromatin appears to have a modifying effect on the phenotypic relationship between morphophysiological traits during human ontogenesis.

结果表明,Y染色体异染色质可能在人的个体发育过程中对形态生理学性状间的表型关系起一种修饰作用。

10.Facultative heterochromatin is the heterochromatin that may become transcriptionally active in specific cell development fates.

兼性异染色质是在特定细胞发育命运中可能具有转录活性的异染色质。

11.Researchers discovered that heterochromatin 异染色质 plays a crucial role in maintaining chromosome stability.

研究人员发现异染色质在维持染色体稳定性方面起着关键作用。

12.The presence of heterochromatin 异染色质 can affect the accessibility of DNA for transcription.

异染色质的存在会影响DNA转录的可及性。

13.The study of heterochromatin 异染色质 helps us understand gene regulation in different cell types.

异染色质的研究有助于我们理解不同细胞类型中的基因调控。

14.During cell division, heterochromatin 异染色质 condenses to help segregate chromosomes.

在细胞分裂过程中,异染色质会凝缩以帮助分离染色体。

15.In cancer cells, the organization of heterochromatin 异染色质 is often disrupted, leading to abnormal gene expression.

在癌细胞中,异染色质的组织通常受到破坏,导致基因表达异常。

作文

In the study of genetics and cell biology, the term heterochromatin refers to a specific type of chromatin that is densely packed and often transcriptionally inactive. This contrasts with euchromatin, which is less condensed and actively involved in gene expression. Understanding heterochromatin is crucial for comprehending how genes are regulated within our cells. It plays a significant role in maintaining the structural integrity of chromosomes and regulating gene activity. One of the notable characteristics of heterochromatin is its presence in regions of the genome that are not actively transcribing genes. These regions are often found near the centromeres and telomeres of chromosomes, where they help to stabilize the chromosome structure during cell division. The compact nature of heterochromatin makes it less accessible to the transcription machinery of the cell, thereby preventing the expression of certain genes. This selective gene silencing is essential for cellular differentiation and development, as different cell types require distinct sets of genes to be active at any given time.Research has shown that heterochromatin is not merely a passive component of the genome; it is actively involved in various regulatory processes. For instance, it can influence the spatial organization of the nucleus, affecting how genes are expressed based on their location within the nuclear architecture. Moreover, heterochromatin is also implicated in the protection of genomic stability. By keeping certain regions of DNA tightly packed, it reduces the likelihood of mutations and other genomic instabilities that could lead to diseases such as cancer.The dynamic nature of heterochromatin is another fascinating aspect of its function. While it is generally associated with gene silencing, there are instances where heterochromatin can become more relaxed, allowing for transient gene expression. This flexibility suggests that heterochromatin is not simply a static form of chromatin but rather a complex and adaptable component of the genome that responds to various cellular signals.In summary, heterochromatin plays a vital role in the regulation of gene expression, the maintenance of chromosomal integrity, and the overall organization of the genome within the cell nucleus. Its dense packing serves to silence certain genes while also providing structural support during cell division. As research continues to unravel the complexities of heterochromatin, it becomes increasingly clear that understanding this component of chromatin is essential for advancing our knowledge of genetics and cellular biology. The implications of heterochromatin extend beyond basic science, as insights into its function may lead to novel therapeutic strategies for diseases linked to chromosomal abnormalities and gene regulation issues.

在遗传学和细胞生物学的研究中,术语异染色质指的是一种特定类型的染色质,它密集打包并且通常转录不活跃。这与真染色质形成对比,后者较少凝聚并积极参与基因表达。理解异染色质对于理解我们细胞中基因是如何被调控至关重要。它在维持染色体结构完整性和调节基因活动方面发挥着重要作用。异染色质的一个显著特征是它存在于基因组中不主动转录基因的区域。这些区域通常位于染色体的着丝粒和端粒附近,帮助在细胞分裂期间稳定染色体结构。异染色质的紧凑性质使其不易被细胞的转录机制所接触,从而防止某些基因的表达。这种选择性的基因沉默对细胞分化和发育至关重要,因为不同的细胞类型在任何给定时间需要激活不同的基因集。研究表明,异染色质不仅仅是基因组的被动组成部分;它还积极参与各种调控过程。例如,它可以影响细胞核的空间组织,影响基因的表达取决于它们在核内架构中的位置。此外,异染色质也与保护基因组稳定性有关。通过将某些DNA区域紧密打包,它减少了突变和其他基因组不稳定性发生的可能性,这可能导致癌症等疾病。异染色质的动态特性是其功能的另一个迷人方面。虽然它通常与基因沉默相关,但也有实例表明异染色质可以变得更加松弛,从而允许瞬时基因表达。这种灵活性表明,异染色质不仅仅是一种静态的染色质形式,而是基因组的复杂且适应性强的组成部分,能够响应各种细胞信号。总之,异染色质在基因表达的调控、染色体完整性的维持以及细胞核内基因组的整体组织中发挥着重要作用。其密集的包装有助于沉默某些基因,同时在细胞分裂过程中提供结构支持。随着研究不断揭示异染色质的复杂性,越来越清楚的是,理解这一染色质成分对于推动我们对遗传学和细胞生物学的知识至关重要。异染色质的功能所带来的影响超越基础科学,因为对其功能的深入理解可能会导致针对与染色体异常和基因调控问题相关的疾病的新治疗策略。