perturbational
简明释义
英[pərˌtɜːbəˈneɪʃənl]美[pərˌtɜrbəˈneɪʃənl]
不安的,烦扰的,扰动的
英英释义
单词用法
扰动分析 | |
扰动效应 | |
扰动方法 | |
扰动稳定性 | |
扰动理论 | |
扰动动力学 |
同义词
反义词
平静 | 湖面平静而宁静,没有波浪。 | ||
稳定 | 经济稳定,显示出持续增长。 | ||
宁静 | 冥想一个小时后,她感到宁静。 |
例句
1.The perturbational finite difference method (PFD) is a new method of constructing high accurate difference scheme.
摄动有限差分(PFD)方法是构造高精度差分格式的一种新方法。
2.The perturbational finite difference method (PFD) is a new method of constructing high accurate difference scheme.
摄动有限差分(PFD)方法是构造高精度差分格式的一种新方法。
3.Engineers often use perturbational 扰动的 analysis to assess the impact of small changes in design parameters.
工程师们通常使用perturbational 扰动的 分析来评估设计参数微小变化的影响。
4.The perturbational 扰动的 changes in the environment can lead to unexpected outcomes in ecological models.
环境中的perturbational 扰动的 变化可能导致生态模型中意想不到的结果。
5.The perturbational 扰动的 effects of gravitational waves were measured by advanced detectors.
先进探测器测量了引力波的perturbational 扰动的 影响。
6.In quantum mechanics, perturbational 扰动的 methods are used to approximate the behavior of complex systems.
在量子力学中,perturbational 扰动的 方法用于近似复杂系统的行为。
7.The scientists conducted a study to analyze the effects of perturbational 扰动的 forces on the stability of the satellite.
科学家们进行了一项研究,以分析perturbational 扰动的 力对卫星稳定性的影响。
作文
In the realm of physics and engineering, the concept of perturbation plays a crucial role in understanding complex systems. When we discuss the term perturbational, we are referring to the effects that small changes or disturbances can have on a system's behavior. These perturbations can arise from various sources, including external forces, environmental changes, or even internal fluctuations within the system itself. Understanding these perturbational effects is essential for predicting how systems will respond over time.For instance, consider the example of a satellite orbiting the Earth. The satellite's orbit is not a perfect circle; it is subject to various perturbational influences such as gravitational forces from the Moon and the Sun, atmospheric drag, and even solar radiation pressure. Engineers and scientists must account for these perturbational factors when calculating the satellite's trajectory and ensuring its stability. By applying perturbation theory, they can make accurate predictions about the satellite's path, allowing for successful missions and the collection of valuable data.Furthermore, in the field of quantum mechanics, perturbational methods are used to understand how quantum systems evolve under the influence of external fields. For example, when an atom is exposed to an electromagnetic field, its energy levels may shift due to perturbational interactions. Physicists employ perturbation theory to analyze these shifts, enabling them to predict the outcomes of experiments and to develop new technologies, such as lasers and semiconductors.The importance of perturbational analysis extends beyond just theoretical applications; it has practical implications in various industries. In climate science, researchers use perturbational models to simulate how small changes in greenhouse gas concentrations can lead to significant alterations in global temperatures and weather patterns. These simulations help policymakers understand the potential impacts of climate change and devise strategies to mitigate its effects.Moreover, in the field of economics, perturbational analysis is applied to study how small changes in interest rates or consumer behavior can affect market dynamics. Economists utilize these insights to forecast economic trends and inform decision-making processes for businesses and governments alike.In conclusion, the term perturbational encapsulates the idea that small disturbances can have profound effects on systems across various disciplines. Whether in physics, engineering, climate science, or economics, understanding perturbational influences allows us to make informed predictions and decisions. As our world becomes increasingly complex, the ability to analyze and adapt to these perturbational changes will be vital for innovation and progress in numerous fields.
在物理和工程领域,扰动的概念在理解复杂系统方面发挥着至关重要的作用。当我们讨论术语perturbational时,我们是指小的变化或干扰对系统行为可能产生的影响。这些扰动可以来自各种来源,包括外部力量、环境变化,甚至是系统内部的波动。理解这些perturbational效应对于预测系统如何随时间变化而响应至关重要。例如,考虑一个围绕地球轨道运行的卫星。卫星的轨道并不是一个完美的圆;它受到各种perturbational影响,例如来自月球和太阳的引力、空气阻力,甚至是太阳辐射压力。工程师和科学家必须考虑这些perturbational因素,以计算卫星的轨迹并确保其稳定性。通过应用扰动理论,他们可以准确预测卫星的路径,从而确保成功的任务和宝贵数据的收集。此外,在量子力学领域,perturbational方法用于理解量子系统在外场影响下如何演变。例如,当一个原子暴露于电磁场时,由于perturbational相互作用,其能级可能会发生变化。物理学家运用扰动理论来分析这些变化,使他们能够预测实验结果并开发新技术,如激光器和半导体。perturbational分析的重要性不仅限于理论应用;它在各个行业中具有实际意义。在气候科学中,研究人员使用perturbational模型来模拟温室气体浓度的小变化如何导致全球温度和天气模式的重大变化。这些模拟帮助政策制定者了解气候变化的潜在影响,并制定减缓其影响的策略。此外,在经济学领域,perturbational分析被应用于研究利率或消费者行为的小变化如何影响市场动态。经济学家利用这些见解来预测经济趋势,并为企业和政府的决策过程提供信息。总之,术语perturbational概括了小干扰可以对各个学科的系统产生深远影响的观点。无论是在物理、工程、气候科学还是经济学中,理解perturbational影响使我们能够做出明智的预测和决策。随着我们的世界变得越来越复杂,分析和适应这些perturbational变化的能力将对各个领域的创新和进步至关重要。