trisect
简明释义
vt. 把……截成三段;把……三等分
第 三 人 称 单 数 t r i s e c t s
现 在 分 词 t r i s e c t i n g
过 去 式 t r i s e c t e d
过 去 分 词 t r i s e c t e d
英英释义
将某物分成三个相等的部分。 | |
In geometry, to bisect an angle or a line segment into three equal angles or segments. | 在几何中,将一个角或线段分成三个相等的角或段。 |
单词用法
三等分一个角 | |
三等分一条线段 | |
三等分的部分 | |
三等分一个三角形 | |
将某物三等分 | |
分成三个相等的部分 |
同义词
划分 | 蛋糕被划分成均等的部分给每个人。 | ||
分割 | 我们需要在团队成员之间分配工作量。 | ||
分区 | 房间被分隔以创建独立的空间。 | ||
隔离 | 数据根据不同标准被隔离。 |
反义词
结合 | The two companies decided to conjoin their efforts to improve efficiency. | 这两家公司决定结合他们的努力以提高效率。 | |
联合 | 各国旨在为一个共同的目标联合起来。 |
例句
1.During the presentation, he showed how to trisect 三等分 a line segment accurately.
在演示中,他展示了如何准确地三等分一条线段。
2.To find the area of a triangle, you can first trisect 三等分 the base.
要计算一个三角形的面积,你可以先将底边三等分。
3.In geometry class, we learned how to trisect 三等分 angles using a compass and straightedge.
在几何课上,我们学习了如何使用圆规和直尺来三等分角度。
4.The artist decided to trisect 三等分 the canvas to create three distinct sections.
这位艺术家决定将画布三等分,以创建三个不同的部分。
5.The mathematician explained that you can trisect 三等分 a given angle using specific geometric constructions.
数学家解释说,你可以使用特定的几何构造来三等分给定的角度。
作文
In the realm of geometry, the concept of dividing shapes and angles into equal parts is fundamental to understanding various properties and relationships. One term that encapsulates this idea is trisect, which means to divide something into three equal parts. This process is not only applicable in mathematics but also finds its way into everyday life, where we often seek to create balance and equality in various aspects. For instance, when planning a meal for a gathering, one might trisect the portions to ensure that each guest receives an equal share, thus promoting fairness and satisfaction among all participants.The importance of trisecting can be observed in numerous scenarios. In architecture, for example, when designing a triangular roof, an architect may need to trisect the angles to ensure that the structure is symmetrical and aesthetically pleasing. By doing so, they can create a balanced design that not only serves its functional purpose but also enhances the visual appeal of the building.Another area where trisecting plays a crucial role is in art. Artists often use geometric shapes and principles to create their masterpieces. When an artist aims to create harmony in their work, they might trisect a canvas into three sections, using each section to explore different themes or colors. This technique allows for a dynamic composition that captures the viewer's attention and evokes emotion.Furthermore, the concept of trisecting extends beyond the physical world into abstract ideas as well. In literature, for instance, a writer may choose to trisect a narrative into three distinct parts: the beginning, the climax, and the resolution. This structure helps to create a well-rounded story that engages readers and provides a satisfying conclusion. Each segment contributes to the overall message and impact of the narrative, demonstrating the power of division in storytelling.In mathematics, trisecting an angle is a classic problem that has puzzled mathematicians for centuries. The challenge lies in finding a method to accurately divide an angle into three equal parts using only a compass and straightedge. While it has been proven that this task is impossible for all angles, the exploration of various techniques and approaches has led to a deeper understanding of geometric principles and the limitations of classical constructions.In conclusion, the term trisect embodies the idea of dividing something into three equal parts, a concept that permeates various fields such as geometry, architecture, art, literature, and mathematics. Whether it is ensuring fairness in portion sizes, creating balanced designs, composing engaging narratives, or exploring mathematical challenges, the act of trisecting serves as a powerful tool for achieving harmony and understanding in both tangible and abstract forms. As we continue to encounter situations that require us to trisect our thoughts, actions, and creations, we are reminded of the significance of balance and equality in our lives.
在几何学领域,将形状和角度划分为相等部分的概念对于理解各种属性和关系至关重要。一个能够概括这一思想的术语是trisect,它的意思是将某物分成三等份。这个过程不仅适用于数学,还渗透到日常生活中,我们常常寻求在各个方面创造平衡和公平。例如,在为聚会准备餐食时,人们可能会trisect份量,以确保每位客人都能得到相等的份额,从而促进所有参与者之间的公平和满意。trisect的重要性可以在许多场景中观察到。例如,在建筑学中,当设计一个三角形屋顶时,建筑师可能需要trisect角度,以确保结构对称且美观。通过这样做,他们可以创建一个平衡的设计,不仅满足功能目的,还增强建筑的视觉吸引力。另一个trisect发挥关键作用的领域是艺术。艺术家通常使用几何形状和原理来创作他们的杰作。当艺术家旨在在作品中创造和谐时,他们可能会将画布trisect为三个部分,利用每个部分探索不同的主题或颜色。这种技巧允许动态的构图,吸引观众的注意并唤起情感。此外,trisect的概念超越了物质世界,延伸到抽象思想。在文学中,例如,作家可能选择将叙事trisect为三个不同的部分:开头、高潮和结局。这种结构有助于创造一个圆满的故事,吸引读者并提供令人满意的结论。每个部分都对整体信息和影响产生贡献,展示了在叙事中分割的力量。在数学中,trisect一个角度是一个经典问题,几个世纪以来一直困扰着数学家。挑战在于找到一种方法,仅使用圆规和直尺准确地将角度分成三等份。虽然已经证明,对于所有角度,这项任务是不可能的,但探索各种技术和方法已导致对几何原理及其经典构造限制的更深入理解。总之,术语trisect体现了将某物分成三等份的思想,这一概念渗透到几何学、建筑学、艺术、文学和数学等多个领域。无论是确保份量的公平性、创造平衡的设计、撰写引人入胜的叙事,还是探索数学挑战,trisect的行为作为实现和谐和理解的强大工具,服务于有形和抽象形式。随着我们继续遇到需要我们trisect思想、行动和创造的情况,我们被提醒了平衡和公平在我们生活中的重要性。