submultiple
简明释义
英[sʌbˈmʌltɪp(ə)l]美[sʌbˈmʌltəpl]
n. 约数,因数
英英释义
单词用法
一个数字的子倍数 | |
找出子倍数 | |
子倍数关系 | |
最大子倍数 | |
最小子倍数 | |
子倍数因子 |
同义词
反义词
倍数 | A multiple of 5 is any number that can be divided by 5 without a remainder. | 5的倍数是指任何可以被5整除的数字。 | |
上确界 | 一个集合的上确界是该集合的最小上界。 |
例句
1.The present invention discloses reduction of submultiple oscillation of power inverter in high-frequency operation.
本发明公开了减少功率逆变器在高频操作下的分谐波振荡。
2.The present invention discloses reduction of submultiple oscillation of power inverter in high-frequency operation.
本发明公开了减少功率逆变器在高频操作下的分谐波振荡。
3.In mathematics, a number is considered a submultiple if it can divide another number without leaving a remainder.
在数学中,如果一个数字能够整除另一个数字而不留下余数,则该数字被视为子倍数。
4.The concept of submultiple is essential when simplifying fractions.
在简化分数时,子倍数的概念是至关重要的。
5.In a classroom setting, teachers often use submultiples to explain division concepts.
在课堂上,教师经常使用子倍数来解释除法概念。
6.The submultiple relationship between units is crucial in scientific measurements.
单位之间的子倍数关系在科学测量中至关重要。
7.To find the submultiple of a given quantity, you must identify its divisors.
要找到给定数量的子倍数,您必须识别其因数。
作文
In the realm of mathematics, the concept of a submultiple (子倍数) plays a crucial role in understanding numbers and their relationships. A submultiple is defined as a number that can divide another number without leaving a remainder. This means that if you have a number, say 12, its submultiples include 1, 2, 3, 4, 6, and of course, 12 itself. Understanding submultiples is essential for various mathematical operations, including fractions, ratios, and even in solving equations.One of the most significant applications of submultiples is in simplifying fractions. For example, when we want to simplify the fraction 8/12, we look for the greatest common submultiple (最大公因数) of 8 and 12, which is 4. By dividing both the numerator and the denominator by this submultiple, we get the simplified fraction of 2/3. This process not only makes calculations easier but also helps in understanding the relationship between different numbers.Moreover, submultiples are pivotal in the study of ratios. Ratios express the relative sizes of two or more values. When comparing two quantities, identifying their submultiples can help in determining the simplest form of the ratio. For instance, if we have two quantities, 16 and 24, the submultiple of both numbers is 8. Thus, the ratio of 16 to 24 simplifies to 2:3 when we divide both numbers by their submultiple.In real-life scenarios, understanding submultiples can aid in various practical situations, such as cooking or crafting. For instance, if a recipe requires 12 cups of flour but you only want to make half the amount, knowing that 6 is a submultiple of 12 allows you to accurately measure out the ingredients. This concept is not just limited to whole numbers; it extends to decimals and fractions as well, making it a versatile tool in everyday life.Furthermore, the concept of submultiples can be explored in the context of music. In music theory, the idea of rhythm often involves patterns that can be expressed in terms of submultiples. For example, a quarter note can be considered a submultiple of a whole note. Understanding these relationships enhances our appreciation of music and helps musicians compose and perform more effectively.In conclusion, the importance of submultiples (子倍数) extends beyond theoretical mathematics into practical applications in daily life, cooking, music, and many other fields. By grasping the concept of submultiples, we can simplify our calculations, enhance our understanding of ratios, and apply this knowledge in various real-world contexts. Whether we are simplifying fractions, comparing quantities, or even engaging in creative pursuits, the understanding of submultiples enriches our mathematical literacy and empowers us to navigate the numerical aspects of our lives with greater ease and confidence.
在数学领域,submultiple(子倍数)这一概念在理解数字及其关系中发挥着至关重要的作用。submultiple被定义为一个可以整除另一个数字而不留下余数的数字。这意味着,如果你有一个数字,比如12,它的submultiples包括1、2、3、4、6,当然还有12本身。理解submultiples对于各种数学运算至关重要,包括分数、比率,甚至解方程。submultiples最重要的应用之一是在简化分数时。例如,当我们想要简化分数8/12时,我们需要寻找8和12的最大公submultiple(最大公因数),即4。通过将分子和分母都除以这个submultiple,我们得到简化后的分数2/3。这个过程不仅使计算变得更简单,而且有助于理解不同数字之间的关系。此外,submultiples在研究比率时也是至关重要的。比率表示两个或多个值的相对大小。在比较两个数量时,识别它们的submultiples可以帮助确定比率的最简形式。例如,如果我们有两个数量,16和24,它们的submultiple是8。因此,当我们将这两个数字都除以它们的submultiple时,16与24的比率简化为2:3。在现实生活中,理解submultiples可以帮助我们处理各种实际情况,例如烹饪或手工艺。例如,如果一个食谱需要12杯面粉,但你只想做一半的量,知道6是12的submultiple可以让你准确测量出所需的材料。这个概念不仅限于整数;它还扩展到小数和分数,使其成为日常生活中一种多用途工具。此外,submultiples的概念可以在音乐的背景下进行探讨。在音乐理论中,节奏的概念通常涉及可以用submultiples表达的模式。例如,四分音符可以被视为全音符的一个submultiple。理解这些关系增强了我们对音乐的欣赏,并帮助音乐家更有效地作曲和演奏。总之,submultiples(子倍数)的重要性超越了理论数学,延伸到日常生活、烹饪、音乐以及许多其他领域。通过掌握submultiples的概念,我们可以简化计算、增强对比率的理解,并在各种现实世界的背景中应用这种知识。无论我们是在简化分数、比较数量,还是参与创造性活动,理解submultiples都丰富了我们的数学素养,使我们能够更轻松、自信地应对生活中的数字方面。