microphysical
简明释义
英[ˌmaɪkrəˈfɪzɪkəl]美[ˌmaɪkrəˈfɪzɪkəl]
adj. 微观物理学的
英英释义
Relating to the physical properties and processes at a microscopic scale, often involving interactions between particles. | 与微观尺度上的物理性质和过程有关,通常涉及粒子之间的相互作用。 |
单词用法
同义词
微观的 | The microscopic structure of the material determines its properties. | 材料的微观结构决定了其特性。 | |
纳米级的 | Research at the nanoscale is crucial for developing new technologies. | 纳米级的研究对开发新技术至关重要。 | |
亚原子的 | 亚原子粒子在量子物理中被研究。 |
反义词
宏观物理的 | The macrophysical properties of the material are easier to observe. | 该材料的宏观物理特性更容易观察。 | |
全球的 | 全球气候模型考虑宏观物理过程。 |
例句
1.The aircraft measurements can be used to improve the understanding of cloud microphysical structure, so to increase the effectiveness of rain enhancement.
这些飞机观测数据资料有助于加深人们对云物理结构的了解,从而提高人工增雨作业效率。
2.An experiment to examine the vertical continuity of microphysical processes in relation to the supporting updrafts was conducted during the Florida Area Cumulus Experiment (FACE) in 1978.
本文利用FACE(佛罗里达积云试验)1978年夏季积云飞机实测资料,对微物理过程的垂直连续性及其和上升气流的关系进行了研究。
3.An experiment to examine the vertical continuity of microphysical processes in relation to the supporting updrafts was conducted during the Florida Area Cumulus Experiment (FACE) in 1978.
本文利用FACE(佛罗里达积云试验)1978年夏季积云飞机实测资料,对微物理过程的垂直连续性及其和上升气流的关系进行了研究。
4.Progress in researches on explicit cloud microphysical schemes is reviewed.
回顾了近年来显式云物理方案的研究进展。
5.The observation of cloud microphysical structure and the analysis of seeding physical effect play an important role in artificial precipitation-enhancement.
降水过程的云微物理结构的观测和催化效应的分析在人工增雨中占有重要的地位。
6.The result shows that the new model can simulate the turbulent structure and the cloud microphysical processes of the marine stratocumulus-topped planetary boundary layer.
数值模拟结果表明,该边界层模式能较合理地模拟海区层积云覆盖的边界层微湍流结构和云微物理过程。
7.The variation of average ut humidity in 24h caused by using different cloud microphysical schemes has decreased, but still reach to 14.3%.
进行24小时平均后,对UT湿度的模拟结果对云微物理方案的敏感性虽然有所减少,但方案间的差异最大仍有14.3%。
8.The note for the observations of the microphysical structure of fog by optical-electrical method and some problems about the data processing are described in the paper.
本文简述了用光电法观测雾微物理结构的工作特点及资料处理中的有关问题。
9.The study of clouds involves both macro and microphysical 微观物理的 processes that affect weather patterns.
对云的研究涉及影响天气模式的宏观和微观物理的过程。
10.In climate models, microphysical 微观物理的 interactions are crucial for accurate predictions.
在气候模型中,微观物理的相互作用对于准确预测至关重要。
11.Understanding the microphysical 微观物理的 mechanisms in storms can help improve forecasting techniques.
理解风暴中的微观物理的机制可以帮助改善预测技术。
12.The microphysical 微观物理的 aspects of particle formation are essential in atmospheric science.
粒子形成的微观物理的方面在大气科学中至关重要。
13.Researchers focus on microphysical 微观物理的 properties of aerosols to understand their impact on air quality.
研究人员关注气溶胶的微观物理的特性,以了解它们对空气质量的影响。
作文
In the realm of science, particularly in physics and meteorology, the term microphysical refers to the small-scale processes that govern the behavior of particles and droplets in the atmosphere. Understanding these microphysical processes is crucial for accurate weather prediction and climate modeling. For instance, when we consider cloud formation, it is not merely the large-scale dynamics that matter, but rather how individual water droplets interact at a microscopic level. These interactions can determine whether a cloud will produce rain, snow, or dissipate entirely. The study of microphysical phenomena extends beyond just meteorology; it plays a significant role in various fields such as materials science, chemistry, and even biology. In materials science, the microphysical properties of materials influence their macroscopic behavior. For example, the strength and durability of concrete are affected by the arrangement and size of its constituent particles. Researchers often examine these microphysical characteristics to develop stronger, more resilient materials. Similarly, in chemistry, understanding the microphysical interactions between molecules can lead to breakthroughs in drug development and chemical reactions. The way molecules bond, react, and transform at a microphysical level can dictate the efficacy of a new medication or the efficiency of a catalytic process. Thus, the implications of microphysical studies are vast and far-reaching.Moreover, in the field of biology, the microphysical interactions at the cellular level are fundamental to understanding life itself. The way cells communicate, transport nutrients, and respond to environmental changes involves complex microphysical processes. For example, the movement of ions across a cell membrane is a microphysical phenomenon that is essential for nerve impulse transmission. Disruptions in these processes can lead to serious health conditions, highlighting the importance of microphysical research in medical science.As we delve deeper into the study of microphysical processes, it becomes evident that they are interconnected with larger systems. The microphysical behaviors of particles contribute to the macroscale phenomena we observe in our environment. For instance, the formation of clouds, precipitation patterns, and even climate change are all influenced by microphysical interactions. This interconnectedness emphasizes the need for interdisciplinary approaches in research, combining insights from physics, chemistry, biology, and environmental science.In conclusion, the significance of microphysical processes cannot be overstated. They are the building blocks of our understanding of the natural world, influencing everything from weather patterns to the development of new materials and medical treatments. As technology advances and we gain new tools for observation and analysis, the exploration of microphysical phenomena will undoubtedly continue to yield valuable insights that enhance our comprehension of complex systems. By focusing on these small-scale interactions, we can better address the challenges facing our planet and improve the quality of life for future generations.
在科学领域,尤其是物理学和气象学中,术语microphysical指的是控制大气中粒子和水滴行为的小尺度过程。理解这些microphysical过程对于准确的天气预测和气候建模至关重要。例如,当我们考虑云的形成时,不仅仅是大型动力学起作用,而是单个水滴在微观层面上的相互作用。这些相互作用可以决定云是产生雨、雪还是完全消散。microphysical现象的研究不仅限于气象学;它在材料科学、化学甚至生物学等多个领域中也发挥着重要作用。在材料科学中,材料的microphysical特性影响其宏观行为。例如,混凝土的强度和耐久性受到其组成颗粒的排列和大小的影响。研究人员常常检查这些microphysical特性,以开发更强、更耐用的材料。类似地,在化学中,理解分子之间的microphysical相互作用可以导致药物开发和化学反应方面的突破。分子的结合、反应和转变方式在microphysical层面上决定了一种新药物的有效性或催化过程的效率。因此,microphysical研究的影响广泛而深远。此外,在生物学领域,细胞层面的microphysical相互作用是理解生命本身的基础。细胞如何交流、运输营养物质以及对环境变化的响应都涉及复杂的microphysical过程。例如,离子通过细胞膜的运动是一个microphysical现象,对于神经冲动的传递至关重要。这些过程的中断可能导致严重的健康问题,突显了microphysical研究在医学科学中的重要性。随着我们深入研究microphysical过程,显而易见的是,它们与更大的系统相互关联。粒子的microphysical行为有助于我们在环境中观察到的宏观现象。例如,云的形成、降水模式甚至气候变化都受到microphysical相互作用的影响。这种相互关联强调了研究中跨学科方法的必要性,结合物理学、化学、生物学和环境科学的见解。总之,microphysical过程的重要性不容低估。它们是我们理解自然世界的基石,影响从天气模式到新材料和医疗治疗的发展。随着技术的进步,我们获得了新的观察和分析工具,对microphysical现象的探索无疑将继续带来有价值的见解,增强我们对复杂系统的理解。通过关注这些小尺度的相互作用,我们可以更好地应对面临我们星球的挑战,并改善未来几代人的生活质量。