quasiparticle
简明释义
英[ˈkwɑːzɪˌpɑrtɪkəl]美[ˈkwɑːzɪˌpɑrtɪkəl]
n. 准粒子
英英释义
单词用法
同义词
反义词
粒子 | 电子被认为是基本粒子。 | ||
基本粒子 | In physics, a particle is a small localized object to which can be ascribed physical properties. | 在物理学中,粒子是一个可以归属物理属性的小局部对象。 |
例句
1.Resistance appears when quasiparticle injection current reaches some threshold value.
当准粒子注入电流超过阈值耐出现电阻。
2.Double tunnel junctions have been used to investigate the properties of superconducting Pb films under quasiparticle injection. At high injection level an inhomogeneous gap state was observed.
用两个重叠的铅隧道结进行实验,当注入电流很大时在铅膜中观察到了非均匀能隙态,铅膜中出现非均匀态的功率阈值比铝膜大得多。
3.Double tunnel junctions have been used to investigate the properties of superconducting Pb films under quasiparticle injection. At high injection level an inhomogeneous gap state was observed.
用两个重叠的铅隧道结进行实验,当注入电流很大时在铅膜中观察到了非均匀能隙态,铅膜中出现非均匀态的功率阈值比铝膜大得多。
4.Find out how many particles are contained in one quasiparticle. For that, consider a state with one quasiparticle added to the BCS ground state.
找出一个准粒子中包含的粒子数。为此,考虑将一个准粒子加到BCS基态时的态。
5.In quantum field theory, quasiparticles 准粒子 can emerge from the interactions of fundamental particles.
在量子场论中,quasiparticles 准粒子 可以从基本粒子的相互作用中出现。
6.Phonons are a type of quasiparticle 准粒子 that represent quantized sound waves in a material.
声子是一种quasiparticle 准粒子,表示材料中量化的声波。
7.Electrons in a solid can be treated as quasiparticles 准粒子 when they interact with the lattice.
当固体中的电子与晶格相互作用时,可以将其视为quasiparticles 准粒子。
8.In condensed matter physics, a quasiparticle 准粒子 is used to describe collective excitations that behave like particles.
在凝聚态物理中,quasiparticle 准粒子 用于描述表现得像粒子的集体激发。
9.The concept of a quasiparticle 准粒子 helps in understanding phenomena like superconductivity.
quasiparticle 准粒子 的概念有助于理解超导现象。
作文
In the realm of condensed matter physics, the concept of a quasiparticle plays a crucial role in understanding the behavior of complex systems. A quasiparticle can be thought of as a collective excitation in a material that behaves like a particle. This notion emerges when we consider the interactions between particles in a solid, where individual particles such as electrons or atoms engage in complex interactions that lead to emergent phenomena. Essentially, a quasiparticle is not a fundamental particle, but rather a useful abstraction that simplifies the description of these interactions.One of the most well-known examples of a quasiparticle is the phonon, which represents a quantized mode of vibration in a lattice structure. When atoms in a solid vibrate, they create waves that propagate through the material. These waves can be quantized, leading to the concept of phonons, which behave like particles with defined energy and momentum. Phonons are crucial for understanding thermal conductivity in solids, as they carry heat through the lattice.Another important example is the exciton, a bound state of an electron and a hole (the absence of an electron) in a semiconductor. When light is absorbed by a semiconductor, it can create an electron-hole pair. The interaction between these two charged entities can lead to the formation of an exciton, which can move through the material as a quasiparticle. This phenomenon is essential for understanding the optical properties of semiconductors and is a foundational concept in the field of optoelectronics.Moreover, in the context of superconductivity, we encounter the concept of Cooper pairs, which are pairs of electrons that move through a lattice without resistance. These pairs can be treated as quasiparticles that condense into a collective ground state, resulting in the remarkable properties of superconductors. The ability of Cooper pairs to flow without scattering leads to the phenomenon of zero electrical resistance, which has profound implications for technology and energy transmission.The study of quasiparticles extends beyond traditional materials; it also plays a significant role in the exploration of exotic states of matter. For instance, in topological insulators, the surface states can be described by quasiparticles that exhibit unique properties, such as spin-momentum locking. This means that the spin of the quasiparticle is intrinsically linked to its momentum, leading to potential applications in spintronics, where information is processed using the spin of electrons rather than their charge.In conclusion, the concept of a quasiparticle is a powerful tool in condensed matter physics, allowing scientists to describe complex interactions in a more manageable way. By considering quasiparticles, researchers can gain insights into various physical phenomena, from thermal conductivity to superconductivity and beyond. As our understanding of materials continues to evolve, the study of quasiparticle dynamics will undoubtedly remain at the forefront of scientific inquiry, paving the way for new technologies and innovations that harness the unique properties of these emergent entities.
在凝聚态物理学领域,quasiparticle(准粒子)这一概念在理解复杂系统的行为中起着至关重要的作用。quasiparticle可以被视为材料中的集体激发,表现得像一个粒子。当我们考虑固体中粒子之间的相互作用时,这一概念就会浮现出来。在固体中,个别粒子如电子或原子参与复杂的相互作用,从而导致涌现现象。因此,quasiparticle并不是基本粒子,而是一个有用的抽象概念,用于简化对这些相互作用的描述。最著名的quasiparticle示例之一是声子,它代表了晶格结构中的量子化振动模式。当固体中的原子振动时,会产生传播通过材料的波。这些波可以量子化,从而引入声子的概念,声子表现得像具有定义能量和动量的粒子。声子对于理解固体中的热导率至关重要,因为它们通过晶格传递热量。另一个重要的例子是激子,它是在半导体中电子与空穴(缺失电子)形成的束缚态。当光被半导体吸收时,可以产生电子-空穴对。这两个带电实体之间的相互作用可以导致激子的形成,激子可以作为quasiparticle在材料中移动。这一现象对于理解半导体的光学特性至关重要,是光电子学领域的基础概念。此外,在超导体的背景下,我们遇到了库珀对的概念,库珀对是指在晶格中无阻力地移动的一对电子。这些对可以被视为quasiparticle,它们在集体基态中凝聚,从而导致超导体的显著性质。库珀对能够无散射地流动,导致零电阻现象,这对技术和能源传输具有深远的影响。quasiparticle的研究不仅限于传统材料;它在探索奇异物质状态方面也发挥着重要作用。例如,在拓扑绝缘体中,表面态可以用quasiparticle来描述,这些quasiparticle具有独特的性质,如自旋-动量锁定。这意味着quasiparticle的自旋与其动量内在相关联,导致在自旋电子学中的潜在应用,其中信息是利用电子的自旋而非电荷进行处理。总之,quasiparticle的概念是凝聚态物理学中的一个强大工具,使科学家能够以更可管理的方式描述复杂的相互作用。通过考虑quasiparticle,研究人员可以深入了解各种物理现象,从热导率到超导性及其他现象。随着我们对材料的理解不断发展,quasiparticle动力学的研究无疑将继续处于科学探究的前沿,为利用这些涌现实体的独特性质开辟新技术和创新的道路。