superconducting

简明释义

[ˌsjuːpəkənˈdʌktɪŋ][ˈsjʊpəkənˌdʌktɪŋ]

adj. [低温]超导的

v. 起超导体作用(superconduct 的 ing 形式)

英英释义

Relating to a state of matter in which a material exhibits zero electrical resistance and the expulsion of magnetic fields, occurring at very low temperatures.

与物质的一种状态有关,该状态下材料表现出零电阻和排斥磁场的特性,通常发生在非常低的温度下。

单词用法

superconducting magnet

超导磁体;超导磁铁

superconducting material

超导体,超导材料

同义词

superconductor

超导体

The superconductor exhibits zero resistance at low temperatures.

该超导体在低温下表现出零电阻。

反义词

resistive

电阻的

The resistive materials generate heat when electric current flows through them.

电阻材料在电流通过时会产生热量。

non-superconducting

非超导的

Non-superconducting wires cannot carry electricity without losing energy.

非超导电缆在输送电力时无法避免能量损失。

例句

1.Starting this month - and continuing for four weeks - the particle accelerator will be speeding lead ions around its superconducting electromagnets.

从这个月开始——并一直持续四个星期——粒子加速器都要对绕着它的超导电磁铁旋转的铅离子进行加速。

2.They also found that the time taken to reach this superconducting state depended on the intensity of the beam.

他们还发现,达到超导状态花费的时间取决于射线的强度。

3.They made four-molecule-long wires - the smallest superconducting structure yet reported.

他们制作了四个分子长的金属线——目前有报道最小的超导体。

4.In that chilled superconducting state, the lines lose no energy to resistance (today's copper cables lose 5 to 7 percent).

在那种冰冷的超导状态下,线缆不会因为电阻而损耗能源(目前的铜电缆损耗5%到7%的能源。)

5.Starting this month -- and continuing for four weeks -- the particle accelerator will be speeding lead ions around its superconducting electromagnets.

从这个月开始——并一直持续四个星期——粒子加速器都要对绕着它的超导电磁铁旋转的铅离子进行加速。

6.Fifty-three of 1, 624 large superconducting magnets - some of them 50 feet long - were damaged and had to be replaced.

在1624个大型超导磁体中,约53个长达50英尺的磁体已经遭到损坏,不得不进行更替。

7.The breakthrough in superconducting 超导 technology could lead to faster and more efficient power transmission.

超导技术上的突破可能会导致更快、更高效的电力传输。

8.Scientists are exploring the potential of superconducting 超导 materials for use in quantum computers.

科学家们正在探索超导材料在量子计算机中的潜在应用。

9.A superconducting 超导 coil can create a magnetic field without energy loss.

一个超导线圈可以在没有能量损失的情况下产生磁场。

10.In the MRI machine, superconducting 超导 magnets are used to generate strong magnetic fields.

在MRI机器中,使用超导磁体来产生强大的磁场。

11.The research team developed a new type of superconducting 超导 material that operates at room temperature.

研究团队开发了一种在室温下工作的新的超导材料。

作文

Superconductivity is a fascinating phenomenon that has captivated scientists since its discovery in the early 20th century. At its core, superconductivity refers to the property of certain materials that can conduct electricity without any resistance when cooled below a critical temperature. This unique feature makes these materials incredibly valuable for various applications, particularly in the fields of physics and engineering. The term superconducting (超导) is derived from this property and encompasses a wide range of materials, including elemental metals like lead and more complex compounds like high-temperature superconductors such as YBCO (yttrium barium copper oxide). One of the most remarkable aspects of superconducting (超导) materials is their ability to expel magnetic fields, a phenomenon known as the Meissner effect. This effect allows superconductors to levitate magnets, leading to exciting possibilities in transportation and energy storage. For instance, magnetic levitation trains, or maglev trains, utilize superconducting (超导) magnets to achieve frictionless travel at high speeds. These trains can reach speeds of over 300 kilometers per hour, showcasing the potential of superconducting (超导) technology in revolutionizing public transportation.In addition to transportation, superconducting (超导) materials play a crucial role in medical imaging technologies, particularly in Magnetic Resonance Imaging (MRI). MRI machines employ superconducting (超导) magnets to generate strong magnetic fields, which are essential for creating detailed images of the human body. The use of superconducting (超导) materials enhances the efficiency and effectiveness of MRI scans, making them an invaluable tool in modern medicine.Furthermore, superconducting (超导) materials have significant implications for energy transmission. Traditional power lines experience energy losses due to electrical resistance, but superconducting (超导) cables can transmit electricity without any loss. This capability could lead to more efficient power grids and reduce the overall cost of electricity. Researchers are actively exploring the potential of superconducting (超导) materials in power applications, aiming to create a more sustainable and efficient energy infrastructure.Despite the numerous advantages of superconducting (超导) materials, there are still challenges to overcome. The requirement for extremely low temperatures to achieve superconductivity limits their practical applications. However, advancements in material science have led to the discovery of high-temperature superconductors, which operate at relatively higher temperatures, making them more feasible for real-world applications. Ongoing research in this area aims to discover new superconducting (超导) materials that can function at room temperature, which would be a game-changer in the field.In conclusion, the study of superconducting (超导) materials offers a glimpse into a future where electricity can be transmitted without loss, transportation can be revolutionized, and medical imaging can be enhanced. As research continues to advance, the potential applications of superconducting (超导) technology are vast and varied, promising to transform our world in ways we have yet to imagine. Understanding the principles and applications of superconducting (超导) materials is not only essential for scientists and engineers but also for anyone interested in the future of technology and innovation.

超导性是一个迷人的现象,自20世纪初发现以来一直吸引着科学家的注意。超导性本质上是指某些材料在冷却到临界温度以下时能够无阻力地导电的特性。这一独特的特性使这些材料在物理和工程等多个领域具有极高的价值。术语superconducting(超导)源于这一特性,涵盖了多种材料,包括铅等元素金属和像YBCO(钇钡铜氧化物)这样的高温超导体。superconducting(超导)材料最显著的一个方面是它们能够排斥磁场,这一现象被称为迈斯纳效应。这一效应使超导体能够悬浮在磁铁上,从而在交通和能源存储方面带来了令人兴奋的可能性。例如,磁悬浮列车利用superconducting(超导)磁铁实现无摩擦的高速旅行。这些列车的速度可以超过300公里每小时,展示了superconducting(超导)技术在革命性公共交通中的潜力。除了交通,superconducting(超导)材料在医学成像技术中也发挥着重要作用,尤其是在磁共振成像(MRI)中。MRI机器采用superconducting(超导)磁铁产生强磁场,这对于创建人体详细图像至关重要。使用superconducting(超导)材料提高了MRI扫描的效率和有效性,使其成为现代医学中不可或缺的工具。此外,superconducting(超导)材料对能源传输也具有重要意义。传统电力线由于电阻而会产生能量损失,但superconducting(超导)电缆可以无损耗地传输电力。这一能力可能导致更高效的电网,并降低电力的整体成本。研究人员正在积极探索superconducting(超导)材料在电力应用中的潜力,旨在创建一个更可持续和高效的能源基础设施。尽管superconducting(超导)材料具有诸多优点,但仍然面临挑战。为了实现超导性,需要极低的温度,这限制了它们的实际应用。然而,材料科学的进步导致高温超导体的发现,这些材料在相对较高的温度下工作,使其在现实应用中更加可行。在这一领域的持续研究旨在发现能够在室温下工作的新的superconducting(超导)材料,这将对该领域产生重大影响。总之,superconducting(超导)材料的研究为我们展现了一个未来的图景,在这个未来中,电力可以无损耗地传输,交通可以被彻底改革,医学成像可以得到增强。随着研究的不断推进,superconducting(超导)技术的潜在应用广泛而多样,承诺以我们尚未想象的方式改变我们的世界。理解superconducting(超导)材料的原理和应用不仅对科学家和工程师至关重要,对任何对技术和创新的未来感兴趣的人来说也是如此。