geometries
简明释义
英[dʒiːəˈmɛtəriz]美[dʒiˈɑːmətriz]
n. 几何图形,几何体;几何尺寸(geometry 的复数)
英英释义
单词用法
[数]分形几何;碎形几何;不规则碎片几何体 | |
微分几何 |
同义词
反义词
混乱 | 聚会后房间一片混乱。 | ||
无序 | The data showed a disorderly pattern that was hard to analyze. | 数据呈现出一种难以分析的无序模式。 |
例句
1.Another frame shows the two-dimensional, graphical representation of the geometries in all layers.
另一个框架显示所有层中几何图形的二维图形化表示。
2.The home's decor is kept at a minimum. The house is instead expressed through the complex angled geometries that define its every surface.
住宅的装饰采用了最简化的处理。该项目并不是通过定义其每个表面的复杂角度的几何形状来表达。
3.However, first- and second-generation high-temperature superconducting wires based on flat tape geometries have high hysteretic losses.
但是,第一代和第二代高温超导导线几何形状的基础上平磁带具有很高的迟滞损失。
4.The skin is bulging and opens in sail-like geometries to accelerate wind-speeds and facilitate the use of crossed ventilation.
这个外形奇特的建筑外观隆起,就像是一艘帆船将要起航,这样的外观能加快它周围空气流动的速度,而且方便了交叉通风。
5.We indulge in riddles, rather than in the impersonal geometries that govern the day-lit world.
比起那毫无人情味的几何学,尽管它左右着白日的世界,我们更愿沉湎在不解之谜中。
6.Numerical simulation is a effective method for solving problems of fluid flow and heat transfer in complex geometries.
数值模拟是解决复杂区域的流动和换热问题的一个行之有效的方法。
7.Producing the SVG output for all geometries and processing non-spatial columns is implemented in function render_geometries.
函数render_geometries负责产生所有几何图形的SVG输出,并处理非空间列。
8.This wheel travel does not affect the camber or caster geometries like current vehicles.
该系统不会和目前的其他车辆那样影响外、纵倾角的几何参数。
9.There are many different ways to extract geometries and generate such a map.
有很多方法可以提取几何图形并生成那样的地图。
10.In mathematics, we study different geometries 几何形状 such as Euclidean and non-Euclidean.
在数学中,我们研究不同的geometries 几何形状,例如欧几里得几何和非欧几里得几何。
11.Architects often experiment with new geometries 几何形状 to push the boundaries of design.
建筑师们经常尝试新的geometries 几何形状以突破设计的界限。
12.The game designer incorporated complex geometries 几何形状 to enhance the gameplay experience.
游戏设计师融入了复杂的geometries 几何形状以增强游戏体验。
13.The artist used various geometries 几何形状 to express the concept of balance in her painting.
这位艺术家使用了各种geometries 几何形状来表达她画作中的平衡概念。
14.In architecture, different geometries 几何形状 can create unique visual effects.
在建筑中,不同的geometries 几何形状可以创造出独特的视觉效果。
作文
In the realm of mathematics and art, the concept of geometries (几何) plays a crucial role in shaping our understanding of space and form. From ancient civilizations to modern architecture, the study of geometries has evolved significantly, influencing various disciplines such as physics, engineering, and even computer graphics. This essay explores the diverse applications and interpretations of geometries, highlighting its significance in both theoretical and practical contexts.To begin with, geometries refers to the study of shapes, sizes, and the properties of space. The most fundamental forms of geometries include Euclidean geometry, which deals with flat surfaces and is based on the postulates established by the ancient Greek mathematician Euclid. In this framework, concepts such as points, lines, and planes are defined, allowing for the exploration of relationships between different shapes. However, as our understanding of the universe expanded, so did the field of geometries. Non-Euclidean geometries emerged, challenging traditional notions of space and leading to revolutionary ideas in both mathematics and physics.One of the most fascinating aspects of geometries is its application in the real world. Architects and designers utilize geometric principles to create aesthetically pleasing and structurally sound buildings. The use of symmetry, proportion, and balance in architectural design can be traced back to the study of geometries. For instance, the Parthenon in Athens exemplifies the harmonious proportions derived from geometric principles, showcasing how geometries can influence our perception of beauty and functionality.Moreover, in the field of computer graphics, geometries serve as the foundation for creating realistic three-dimensional models. Through the manipulation of geometric shapes, artists and programmers can simulate real-world objects and environments, enhancing the visual experience in video games, movies, and virtual reality applications. The ability to understand and apply geometries is essential for anyone looking to excel in these creative industries.In addition to its practical applications, geometries also holds significant philosophical implications. The exploration of different geometric frameworks can lead to profound questions about the nature of reality and our perception of the universe. For example, the study of spherical and hyperbolic geometries challenges our intuitive understanding of space, suggesting that there are multiple ways to perceive and interpret the world around us. This philosophical dimension of geometries invites us to consider not only the mathematical properties but also the underlying concepts that govern our understanding of existence.In conclusion, the term geometries encompasses a vast and intricate field that extends far beyond mere shapes and formulas. Its relevance spans across various domains, from architecture and art to physics and philosophy. By delving into the study of geometries, we gain valuable insights into the structure of our world and the principles that govern it. As we continue to explore and expand our knowledge of geometries, we unlock new possibilities for innovation and creativity, paving the way for future generations to build upon the foundations laid by those who came before us.
在数学和艺术的领域中,概念geometries(几何)在塑造我们对空间和形状的理解方面发挥着至关重要的作用。从古代文明到现代建筑,geometries的研究经历了显著的发展,影响着物理学、工程学甚至计算机图形学等多个学科。本文探讨了geometries的多样应用和解释,突显其在理论和实践背景下的重要性。首先,geometries指的是对形状、大小和空间属性的研究。最基本的geometries形式包括欧几里得几何,它处理平面表面,并基于古希腊数学家欧几里得建立的公设。在这个框架中,点、线和平面等概念被定义,从而允许探索不同形状之间的关系。然而,随着我们对宇宙理解的扩展,geometries领域也随之发展。非欧几里得几何的出现挑战了传统的空间观念,导致了数学和物理学中的革命性思想。geometries的一个迷人方面是它在现实世界中的应用。建筑师和设计师利用几何原理来创造美观且结构合理的建筑。建筑设计中对称性、比例和均衡的使用可以追溯到geometries的研究。例如,雅典的帕台农神庙就是几何原理所衍生的和谐比例的典范,展示了geometries如何影响我们对美和功能的感知。此外,在计算机图形学领域,geometries作为创建逼真三维模型的基础。通过对几何形状的操控,艺术家和程序员可以模拟真实世界的物体和环境,增强视频游戏、电影和虚拟现实应用中的视觉体验。理解和应用geometries的能力对于任何希望在这些创意行业中脱颖而出的人来说都是必不可少的。除了实际应用外,geometries还具有重要的哲学意义。对不同几何框架的探索可以引发关于现实本质和我们对宇宙感知的深刻问题。例如,球面和双曲geometries的研究挑战了我们对空间的直观理解,暗示有多种方式可以感知和解释我们周围的世界。geometries的这种哲学维度邀请我们不仅考虑数学属性,还考虑支配我们对存在理解的基本概念。总之,术语geometries涵盖了一个广泛而复杂的领域,远远超出了简单的形状和公式。它的相关性跨越多个领域,从建筑和艺术到物理学和哲学。通过深入研究geometries,我们获得了对我们世界结构及其支配原则的宝贵见解。随着我们继续探索和扩展对geometries的知识,我们为创新和创造力开辟了新的可能性,为未来几代人铺平了道路,使他们能够在前人奠定的基础上继续发展。