macrographic
简明释义
英[/ˌmækrəˈɡræfɪk/]美[/ˌmækrəˈɡræfɪk/]
adj. 宏观的;低倍照相的
英英释义
Relating to or denoting the study or representation of large-scale structures or features, typically in contrast to microscopic or fine details. | 与大规模结构或特征的研究或表现相关,通常与显微或细节相对。 |
单词用法
同义词
反义词
微观的 | The micrographic analysis revealed details not visible to the naked eye. | 微观分析揭示了肉眼无法看到的细节。 | |
亚显微的 | Submicroscopic structures are often studied using advanced imaging techniques. | 亚显微结构通常使用先进的成像技术进行研究。 |
例句
1.With the macrographic method, chemical composition analysis and microstructure observation, an analysis was made of the reasons about Swap Blocks of the Roller of XKP-560 Financials Plastic Machine.
通过宏观检查、化学成份分析、显微组织观察,对XKP-560 破胶机辊筒光辊开裂掉块原因进行了分析。
2.With the macrographic method, chemical composition analysis and microstructure observation, an analysis was made of the reasons about Swap Blocks of the Roller of XKP-560 Financials Plastic Machine.
通过宏观检查、化学成份分析、显微组织观察,对XKP-560 破胶机辊筒光辊开裂掉块原因进行了分析。
3.The macrographic 宏观图像的 analysis revealed patterns not visible to the naked eye.
该宏观图像的分析揭示了肉眼无法看到的模式。
4.Using macrographic 宏观图像的 imaging, researchers could observe the structure of the cells in detail.
通过使用宏观图像的成像,研究人员可以详细观察细胞的结构。
5.The presentation included macrographic 宏观图像的 data to support the findings of the study.
演示文稿中包含了宏观图像的数据,以支持研究结果。
6.In the art exhibit, there were several macrographic 宏观图像的 photographs that captured the beauty of nature.
在艺术展览中,有几幅宏观图像的照片捕捉了自然的美。
7.The scientist used macrographic 宏观图像的 techniques to analyze the surface of the mineral.
科学家使用宏观图像的技术来分析矿物的表面。
作文
In the realm of science and technology, the term macrographic refers to the study or representation of large-scale structures and patterns that can be observed without the aid of a microscope. This concept is particularly significant in fields such as materials science, geology, and biology, where understanding the larger context of microscopic features is essential for comprehensive analysis. For instance, when examining the properties of a metal, scientists often look at its macrographic characteristics to determine how its structure affects overall performance. This includes analyzing grain sizes, phase distributions, and surface textures. The importance of macrographic analysis cannot be overstated. In materials science, engineers and researchers utilize macrographic techniques to assess the integrity of materials used in construction and manufacturing. A thorough macrographic examination can reveal defects or inconsistencies that might not be visible at a smaller scale, thus preventing potential failures in critical structures. Similarly, in geology, macrographic studies help geologists understand the formation processes of rock layers and the distribution of minerals, which can lead to discoveries of natural resources such as oil and gas. Moreover, in biology, macrographic analysis plays a vital role in the study of ecosystems and biodiversity. Researchers often conduct macrographic surveys to assess vegetation patterns, animal habitats, and ecological interactions within larger landscapes. By observing these patterns, scientists can draw conclusions about the health of an ecosystem and the impact of environmental changes. This information is crucial for conservation efforts and for making informed decisions regarding land use and resource management. Furthermore, the application of macrographic techniques extends beyond traditional scientific fields. In art and design, understanding macrographic elements can enhance the aesthetic appeal of a work by emphasizing the relationship between larger forms and finer details. Artists may use macrographic principles to create visually striking compositions that engage viewers on multiple levels. In conclusion, the term macrographic encompasses a broad spectrum of applications across various disciplines. From assessing material integrity to studying ecological systems and enhancing artistic expression, the significance of macrographic analysis is profound. As we continue to advance in our understanding of the world around us, the ability to observe and interpret macrographic patterns will remain a critical skill for scientists, artists, and decision-makers alike. The interconnectedness of these fields highlights the value of a holistic approach to both scientific inquiry and creative expression, ultimately enriching our comprehension of complex systems and fostering innovation in diverse areas of study.
在科学和技术领域,术语宏观图形指的是对大规模结构和模式的研究或表现,这些结构和模式可以在没有显微镜的情况下观察到。这个概念在材料科学、地质学和生物学等领域尤为重要,在这些领域中,理解微观特征的更大背景对于全面分析至关重要。例如,在检查金属的性能时,科学家通常会查看其宏观图形特征,以确定其结构如何影响整体性能。这包括分析晶粒大小、相分布和表面纹理。宏观图形分析的重要性不容小觑。在材料科学中,工程师和研究人员利用宏观图形技术来评估用于建筑和制造的材料的完整性。彻底的宏观图形检查可以揭示在较小尺度上可能看不到的缺陷或不一致,从而防止关键结构中的潜在故障。同样,在地质学中,宏观图形研究帮助地质学家了解岩层的形成过程和矿物的分布,这可能导致发现石油和天然气等自然资源。此外,在生物学中,宏观图形分析在生态系统和生物多样性的研究中发挥着至关重要的作用。研究人员经常进行宏观图形调查,以评估植被模式、动物栖息地和生态相互作用。在更大的景观中观察这些模式,科学家可以得出关于生态系统健康和环境变化影响的结论。这些信息对于保护工作和制定有关土地使用和资源管理的明智决策至关重要。此外,宏观图形技术的应用超越了传统科学领域。在艺术和设计中,理解宏观图形元素可以通过强调大形式与细节之间的关系来增强作品的美学吸引力。艺术家可以使用宏观图形原理来创造视觉上引人注目的作品,在多个层面上吸引观众。总之,术语宏观图形涵盖了各个学科广泛的应用。从评估材料完整性到研究生态系统以及增强艺术表现,宏观图形分析的重要性深远。随着我们继续加深对周围世界的理解,观察和解释宏观图形模式的能力将仍然是科学家、艺术家和决策者的重要技能。这些领域之间的相互联系突显了对科学探究和创造性表达的整体方法的价值,最终丰富了我们对复杂系统的理解,并促进了各个研究领域的创新。