silicide

简明释义

[ˈsɪlɪˌsaɪd][ˈsɪlɪˌsaɪd]

n. [无化] 硅化物

英英释义

A silicide is a compound formed between silicon and a more electropositive element, typically a metal, characterized by the presence of silicon in its structure.

硅化物是一种由硅和更电正元素(通常是金属)形成的化合物,其结构中含有硅。

单词用法

metal silicide

金属硅化物

silicon-based silicide

基于硅的硅化物

transition metal silicide

过渡金属硅化物

silicide formation

硅化物形成

同义词

silicon compound

硅化合物

Silicon compounds are widely used in electronics.

硅化合物广泛应用于电子产品中。

silicon alloy

硅合金

Silicon alloys can improve the mechanical properties of materials.

硅合金可以改善材料的机械性能。

反义词

silicon

Silicon is widely used in semiconductor manufacturing.

硅广泛用于半导体制造。

non-silicide compound

非硅化合物

Non-silicide compounds can have different properties compared to silicides.

与硅化物相比,非硅化合物可能具有不同的性质。

例句

1.Other silicide layers (50.4-50.6) are on the tops of the source, drain and polysilicon gate.

其它硅化物层(50.4 - 50.6)处于源极、漏极和多晶硅栅极的顶部。

2.In particular, when the refractory metal silicide film is a tungsten silicide film, the concentration of cu is preferable that it is in the range of 0.1 to 1.0 wt. %.

特别是,当难熔金属硅化物薄膜是硅化物薄膜的钨,铜的浓度最好,它在0.1至1.0范围为野生。%。

3.The typical growth condition is also determined. The composition of titanium silicide films is analysed…

还确定了典型工艺条件,并用俄歇电子能谱分析了硅化钛膜的组分。

4.The metal silicide layer prepared by the method has high heat stability and controllable growth speed.

本发明方法制备的金属硅化物层热稳定性高,且生长速度可控。

5.Our company is a joint-stock company operated under the modern corporation system. we have a production line of organic chloride silicide nitride compounds and etc.

本公司是一家集医药中间体研发、生产、销售为一体的、按现代企业制度运作的股份企业。目前产品以有机卤化物、有机硅化物、氮化物系列产品为主。

6.The effect of oxygen impurity on silicide formation has been observed. Finally, the mecha…

观察到氧杂质对形成条件的影响,简单讨论了离子束混合形成硅化物的机理。

7.In the fabrication of integrated circuits, silicide 硅化物 helps in improving the performance of transistors.

在集成电路的制造中,硅化物有助于提高晶体管的性能。

8.The use of silicide 硅化物 in solar cells can enhance their efficiency significantly.

在太阳能电池中使用硅化物可以显著提高其效率。

9.During the alloying process, silicide 硅化物 can form at high temperatures.

在合金过程中,硅化物可以在高温下形成。

10.The semiconductor industry often uses silicide 硅化物 to reduce contact resistance.

半导体行业常常使用硅化物来降低接触电阻。

11.Researchers are exploring new types of silicide 硅化物 for better thermal stability.

研究人员正在探索新型硅化物以获得更好的热稳定性。

作文

In the realm of materials science and semiconductor technology, the term silicide refers to a compound composed of silicon and a more electropositive metal. These compounds have gained significant attention due to their unique properties and their crucial role in enhancing the performance of electronic devices. The formation of silicide occurs when silicon reacts with metals such as nickel, cobalt, or titanium, resulting in a material that exhibits improved electrical conductivity and thermal stability. This characteristic makes silicide an essential component in the fabrication of integrated circuits and other electronic components.The use of silicide in semiconductor technology is particularly noteworthy. As transistors continue to shrink in size, the resistance associated with interconnections can become a bottleneck for performance. By incorporating silicide into these interconnections, engineers can significantly reduce resistive losses, thereby enhancing the overall efficiency of the device. For instance, nickel silicide (NiSi) is widely used in the production of advanced CMOS (Complementary Metal-Oxide-Semiconductor) technologies, where it serves as a low-resistance contact material between the silicon substrate and the metal interconnects.Moreover, silicide compounds also play a pivotal role in improving the thermal stability of semiconductor devices. As electronic components generate heat during operation, maintaining optimal thermal performance is critical to ensure reliability and longevity. The incorporation of silicide can help dissipate heat more effectively, preventing overheating and potential failure of the device.Beyond the semiconductor industry, silicide materials are also utilized in various other applications, including thermoelectric devices and solar cells. In thermoelectric applications, silicide can be used to create efficient energy conversion systems, converting temperature differences into electrical energy. In solar cells, silicide layers can enhance light absorption and improve overall energy conversion efficiency.The synthesis of silicide can be achieved through various methods, including sputtering, chemical vapor deposition, and solid-state reactions. Each method offers different advantages in terms of control over the composition and morphology of the resulting silicide. Researchers are continually exploring new techniques to optimize the production of silicide materials, aiming to enhance their performance and expand their applications further.In conclusion, the significance of silicide in modern technology cannot be overstated. Its unique properties enable advancements in semiconductor devices, contributing to the miniaturization and increased efficiency of electronic components. As technology continues to evolve, the role of silicide will likely expand, paving the way for innovative applications and improved performance across various fields. Understanding and mastering the concept of silicide is essential for anyone interested in materials science, engineering, and semiconductor technology. The future of electronics may very well depend on the continued development and utilization of silicide materials, making it a vital area of study for researchers and engineers alike.

在材料科学和半导体技术领域,术语silicide指的是由硅和更具电正性的金属组成的化合物。这些化合物因其独特的性质以及在提升电子设备性能中的关键作用而受到广泛关注。silicide的形成发生在硅与镍、钴或钛等金属反应时,产生一种具有改善的电导率和热稳定性的材料。这一特性使得silicide成为集成电路和其他电子元件制造中的重要组成部分。silicide在半导体技术中的应用尤为显著。随着晶体管尺寸的不断缩小,互连所带来的电阻可能成为性能的瓶颈。通过将silicide纳入这些互连中,工程师可以显著降低电阻损耗,从而提高设备的整体效率。例如,镍silicide(NiSi)被广泛用于先进CMOS(互补金属氧化物半导体)技术的生产中,作为硅基底与金属互连之间的低电阻接触材料。此外,silicide化合物在提高半导体器件的热稳定性方面也发挥着关键作用。由于电子元件在运行过程中会产生热量,因此保持最佳的热性能对于确保可靠性和使用寿命至关重要。纳入silicide可以更有效地散热,防止设备过热和潜在故障。除了半导体行业,silicide材料还用于各种其他应用,包括热电设备和太阳能电池。在热电应用中,silicide可用于创建高效的能量转换系统,将温差转化为电能。在太阳能电池中,silicide层可以增强光吸收并提高整体能量转换效率。silicide的合成可以通过多种方法实现,包括溅射、化学气相沉积和固态反应。每种方法在控制生成的silicide的组成和形态方面都有不同的优点。研究人员不断探索新技术,以优化silicide材料的生产,旨在进一步提升其性能和扩展应用。总之,silicide在现代技术中的重要性不容小觑。其独特的性质使得半导体器件的进步成为可能,促进了电子元件的小型化和效率提升。随着技术的不断发展,silicide的角色可能会进一步扩大,为各个领域的创新应用和性能提升铺平道路。理解和掌握silicide的概念对于任何对材料科学、工程和半导体技术感兴趣的人来说都是至关重要的。电子技术的未来可能在很大程度上依赖于silicide材料的持续开发和利用,使其成为研究人员和工程师们共同关注的重要研究领域。