spectroscopy
简明释义
英[spekˈtrɒskəpi]美[spekˈtrɑːskəpi]
n. [光] 光谱学
英英释义
Spectroscopy is the study of the interaction between matter and electromagnetic radiation, used to analyze the properties of substances. | 光谱学是研究物质与电磁辐射之间相互作用的学科,用于分析物质的性质。 |
单词用法
红外光谱法;红外线分光镜 | |
拉曼光谱学 |
同义词
光谱测量 | Spectrometry is widely used in chemistry to identify substances. | 光谱测量广泛应用于化学中以识别物质。 | |
光谱分析 | Spectral analysis helps in understanding the composition of stars. | 光谱分析有助于理解恒星的成分。 |
反义词
例句
1.Spectroscopy is how you go and look at patterns, not just individual lines.
光谱学就是你怎样运行和看待一个图案的,而不是单独的线条。
2.Meanwhile, the paper introduces Near-Infrared Spectroscopy to the analysis of triploid Populus tomentosa for the first time.
同时,本文首次将近红外光谱技术引入三倍体毛白杨的分析中。
3.Now he and his collaborators use several methods, including mass spectroscopy and ultraviolet probes.
现在,他和他的同伴用了许多方法,包括质谱分析法以及紫外探测法来测量含氧量。
4.And in the MRI and MR spectroscopy here, the prostate tumor activity is shown in red — you can see it diminishing after a year.
在这边的磁共振造影与光谱分析中,摄护腺肿瘤的活动以红色显示,你可以看到它在一年之后,显着的减少。
5.Channel stress is simulated by using mask-edge dislocation model and actual stress is also measured by Raman spectroscopy.
沟道应力的模拟方法则采用掩膜版边缘错位模型(mask - edge dislocation model),应力测量方面采用拉曼光谱法。
6.And in the MRI and MR spectroscopy here, the prostate tumor activity is shown in red — you can see it diminishing after a year.
在这边的磁共振造影与光谱分析中,摄护腺肿瘤的活动以红色显示,你可以看到它在一年之后,显着的减少。
7.Canadian scientists used X-ray spectroscopy to compare new mercury amalgams to those about 20 years old.
来自加拿大的科学家们使用了X射线光谱仪对崭新的汞合金填充物和那些用了20年的填充物进行了比对。
8.Spectroscopy has a very distinct advantage over previous methods of analyzing our works, because it's not invasive.
光谱学相对以前解析作品的方法有一个明显优势,即它不会对原作造成损害。
9.Spectroscopy allows researchers to identify materials by their unique spectral fingerprints.
光谱学允许研究人员通过其独特的光谱指纹识别材料。
10.Using spectroscopy, astronomers can determine the distance of celestial objects.
天文学家可以利用光谱学确定天体的距离。
11.The scientist used spectroscopy to analyze the chemical composition of the stars.
科学家使用光谱学分析星星的化学成分。
12.The environmental scientist employed spectroscopy to detect pollutants in water samples.
环境科学家使用光谱学检测水样中的污染物。
13.In pharmaceuticals, spectroscopy is essential for quality control of drugs.
在制药行业,光谱学对药物的质量控制至关重要。
作文
Spectroscopy is a powerful analytical technique that plays a crucial role in various scientific fields, including chemistry, physics, and astronomy. It involves the study of the interaction between matter and electromagnetic radiation. By examining how substances absorb, emit, or scatter light, scientists can gain valuable insights into the composition and structure of materials. The fundamental principle of spectroscopy (光谱学) lies in its ability to separate light into its constituent wavelengths, allowing researchers to identify specific characteristics of different substances.One of the most common forms of spectroscopy (光谱学) is infrared spectroscopy, which is widely used to analyze organic compounds. In this technique, infrared light is passed through a sample, and the resulting spectrum provides information about the molecular vibrations and functional groups present in the compound. This method is particularly useful in identifying unknown substances and determining their chemical structures.Another important type of spectroscopy (光谱学) is nuclear magnetic resonance (NMR) spectroscopy. NMR relies on the magnetic properties of atomic nuclei and their interactions with radiofrequency radiation. This technique is invaluable in organic chemistry for elucidating the structures of complex molecules. By analyzing the NMR spectrum, chemists can deduce the arrangement of atoms within a molecule, which is essential for understanding its properties and reactivity.In the field of astronomy, spectroscopy (光谱学) is used to study celestial objects. By analyzing the light emitted or absorbed by stars and galaxies, astronomers can determine their composition, temperature, density, and motion. The famous Hubble Space Telescope has utilized spectroscopy (光谱学) extensively to explore the universe, providing insights into the life cycles of stars and the expansion of the universe.Moreover, spectroscopy (光谱学) has applications in medicine, particularly in diagnostic techniques. For instance, Raman spectroscopy is employed to detect cancerous tissues by identifying molecular changes that occur during disease progression. This non-invasive method allows for early diagnosis and monitoring of treatment efficacy.The advancements in technology have significantly enhanced the capabilities of spectroscopy (光谱学). Modern instruments are capable of producing high-resolution spectra with greater sensitivity and speed. These improvements have opened new avenues for research and analysis, enabling scientists to explore previously inaccessible realms of knowledge.In conclusion, spectroscopy (光谱学) is an essential tool across multiple disciplines, providing critical information about the composition and behavior of matter. Its applications range from identifying chemical compounds to studying distant galaxies, showcasing its versatility and importance in scientific inquiry. As technology continues to evolve, the future of spectroscopy (光谱学) promises even more exciting discoveries and advancements that will further our understanding of the natural world.
光谱学是一种强大的分析技术,在化学、物理和天文学等多个科学领域中发挥着至关重要的作用。它涉及物质与电磁辐射之间相互作用的研究。通过检查物质如何吸收、发射或散射光,科学家可以获得有关材料组成和结构的宝贵见解。光谱学的基本原理在于其将光分离为其组成波长的能力,从而使研究人员能够识别不同物质的特定特征。最常见的光谱学形式之一是红外光谱学,它被广泛用于分析有机化合物。在该技术中,红外光通过样品,结果光谱提供有关分子振动和存在于化合物中的官能团的信息。这种方法在识别未知物质和确定其化学结构方面尤其有用。另一种重要的光谱学类型是核磁共振(NMR)光谱学。NMR依赖于原子核的磁性及其与射频辐射的相互作用。这项技术在有机化学中对于阐明复杂分子的结构至关重要。通过分析NMR光谱,化学家可以推断分子内原子的排列,这对理解其性质和反应性至关重要。在天文学领域,光谱学被用来研究天体。通过分析恒星和星系发射或吸收的光,天文学家可以确定它们的组成、温度、密度和运动。著名的哈勃太空望远镜广泛利用光谱学探索宇宙,提供了关于恒星生命周期和宇宙膨胀的见解。此外,光谱学在医学中也有应用,特别是在诊断技术中。例如,拉曼光谱学被用于通过识别在疾病进展过程中发生的分子变化来检测癌组织。这种非侵入性方法允许早期诊断和治疗效果监测。技术的进步显著增强了光谱学的能力。现代仪器能够以更高的分辨率和灵敏度、更快的速度产生光谱。这些改进为研究和分析开辟了新的途径,使科学家能够探索以前无法接触的知识领域。总之,光谱学是多个学科中的重要工具,提供有关物质组成和行为的关键信息。它的应用范围从识别化合物到研究遥远的星系,展示了它在科学探究中的多功能性和重要性。随着技术的不断发展,光谱学的未来承诺将带来更多激动人心的发现和进步,进一步加深我们对自然世界的理解。