multiparticle

简明释义

[ˌmʌltiˈpɑːtɪkl][ˌmʌltiˈpɑrtɪkl]

多粒子

英英释义

Referring to systems or phenomena that involve multiple particles interacting with each other, often studied in fields like physics and chemistry.

指涉及多个粒子相互作用的系统或现象,通常在物理和化学等领域进行研究。

单词用法

multiparticle physics

多粒子物理

multiparticle entanglement

多粒子纠缠

multiparticle scattering

多粒子散射

multiparticle correlations

多粒子相关性

multiparticle approach

多粒子方法

multiparticle dynamics

多粒子动力学

multiparticle simulations

多粒子模拟

multiparticle theory

多粒子理论

同义词

many-particle

多粒子

In many-body physics, the behavior of a many-particle system is studied to understand complex interactions.

在许多体物理学中,研究多粒子系统的行为以理解复杂的相互作用。

multiple particle

多个粒子

The multiple particle approach allows for a more accurate simulation of quantum systems.

多个粒子方法允许对量子系统进行更准确的模拟。

反义词

single particle

单粒子

In a single particle system, the behavior can be analyzed independently.

在单粒子系统中,行为可以独立分析。

monoparticle

单一粒子

Monoparticle models simplify the complexities found in multiparticle interactions.

单一粒子模型简化了多粒子相互作用中的复杂性。

例句

1.We considered the issue of using the multiparticle entanglement into remote preparation of quantum states.

研究了利用多体量子纠缠进行远程态制备的问题。

2.The different choices for phase space variables in the study of anomalous scaling in high energy multiparticle production are discussed.

讨论高能多粒子产生反常标度性研究中的各种相空间变量选择。

3.The multiparticle Bose correlations of bosons emitted from dispersed thermal droplets of quark-gluon plasma are simulated by Monte Carlo.

对由空间离散分布的夸克-胶子等离子体热滴发射的玻色子,本文进行了多粒子玻色关联的蒙特卡罗模拟研究。

4.The method of removing statistics fluctuation with factorial moment was introduce and the cumulant variable able to even for distribution of multiparticle production was proved.

本文介绍了用阶乘矩能够消除统计起伏,证明引入累积变量后可使粒子数的分布变得均匀;给出了消除粒子间关联效应的方。

5.In this thesis, we focus our research on applying the multiparticle entanglement in quantum information processing, assisted by local operation and classical communication.

本论文重点研究了一些经典通信和局域操作辅助下多体纠缠对处理量子信息的作用。

6.On the premise of considering Pauli exclusion principle strictly, we have obtained an exact general formula of multiparticle and multi-hole state densities for any single-particle Hamiltonian.

在严格考虑泡利不相容原理的前提下,我们导出了任意单粒子哈密顿量的多粒子、多空穴能态密度的精确的、一般的公式。

7.On the premise of considering Pauli exclusion principle strictly, we have obtained an exact general formula of multiparticle and multi-hole state densities for any single-particle Hamiltonian.

在严格考虑泡利不相容原理的前提下,我们导出了任意单粒子哈密顿量的多粒子、多空穴能态密度的精确的、一般的公式。

8.The study of multiparticle 多粒子 entanglement is crucial for the development of quantum computing.

研究多粒子纠缠对量子计算的发展至关重要。

9.Researchers are studying multiparticle 多粒子 interactions to understand the fundamental forces of nature.

研究人员正在研究多粒子相互作用,以理解自然的基本力量。

10.In quantum mechanics, the behavior of a multiparticle 多粒子 system can be significantly more complex than that of a single particle.

在量子力学中,多粒子系统的行为可能比单个粒子的行为复杂得多。

11.The simulation of multiparticle 多粒子 dynamics requires advanced computational techniques.

模拟多粒子动力学需要先进的计算技术。

12.In high-energy physics, experiments often involve multiparticle 多粒子 collisions at particle accelerators.

在高能物理学中,实验通常涉及粒子加速器中的多粒子碰撞。

作文

In the realm of physics, the term multiparticle refers to systems that involve multiple particles interacting with one another. These interactions can be complex and are often studied in various fields such as quantum mechanics, statistical mechanics, and condensed matter physics. Understanding multiparticle systems is crucial because many natural phenomena cannot be explained by considering only single particles in isolation. For instance, in a gas, the behavior of individual molecules is influenced by their interactions with other molecules, which is a classic example of a multiparticle system.The study of multiparticle systems has led to significant advancements in our understanding of fundamental forces and the structure of matter. One of the primary challenges in studying these systems is the mathematical complexity that arises from the interactions between numerous particles. Traditional approaches may fail to accurately predict the behavior of such systems, necessitating the development of new theoretical frameworks and computational methods.In quantum mechanics, multiparticle systems are often described using wave functions that account for the probability amplitudes of finding particles in various states. The phenomenon of entanglement, where particles become correlated in such a way that the state of one particle cannot be described independently of the state of the others, is a hallmark of multiparticle systems. This entanglement is not only a fascinating aspect of quantum theory but also has practical implications for quantum computing and information processing.Statistical mechanics provides another lens through which to view multiparticle systems. It allows scientists to derive macroscopic properties of materials from the microscopic behavior of individual particles. For example, the temperature of a gas can be understood as a measure of the average kinetic energy of its constituent molecules, which are part of a larger multiparticle ensemble. This connection between microscopic and macroscopic phenomena highlights the importance of understanding the collective behavior of particles in various states of matter.Moreover, in the field of condensed matter physics, researchers frequently encounter multiparticle systems when studying materials like superconductors and magnets. The collective excitations in these materials, such as phonons and magnons, arise from the interactions of many particles and lead to emergent phenomena that cannot be predicted by examining individual components alone. These emergent properties are a testament to the rich and intricate nature of multiparticle systems.In conclusion, the concept of multiparticle systems is fundamental to our understanding of the physical universe. From the behavior of gases to the intricacies of quantum entanglement, the interactions among multiple particles play a critical role in shaping the properties of matter. As research continues to advance in this area, we can expect to uncover even more profound insights into the nature of reality, driven by the complexities and wonders of multiparticle interactions.

在物理学领域,术语multiparticle指的是涉及多个粒子相互作用的系统。这些相互作用可能是复杂的,通常在量子力学、统计力学和凝聚态物理等多个领域进行研究。理解multiparticle系统至关重要,因为许多自然现象无法通过仅考虑孤立的单个粒子来解释。例如,在气体中,单个分子的行为受到与其他分子相互作用的影响,这就是一个经典的multiparticle系统的例子。对multiparticle系统的研究推动了我们对基本力和物质结构的理解的重大进展。研究这些系统的主要挑战之一是,由于多个粒子之间的相互作用引发的数学复杂性。传统的方法可能无法准确预测这些系统的行为,因此需要开发新的理论框架和计算方法。在量子力学中,multiparticle系统通常使用波函数来描述,这些波函数考虑了在各种状态下找到粒子的概率振幅。纠缠现象,即粒子以某种方式相关,使得一个粒子的状态无法独立于其他粒子的状态进行描述,是multiparticle系统的一个特征。这种纠缠不仅是量子理论的一个迷人方面,而且对量子计算和信息处理也有实际意义。统计力学提供了另一个视角来观察multiparticle系统。它允许科学家从单个粒子的微观行为推导出材料的宏观性质。例如,气体的温度可以理解为其组成分子的平均动能的度量,而这些分子是更大multiparticle集合的一部分。这种微观和宏观现象之间的联系突显了理解各种物质状态下粒子的集体行为的重要性。此外,在凝聚态物理领域,研究人员在研究超导体和磁性材料时经常遇到multiparticle系统。这些材料中的集体激发,如声子和自旋波,源于许多粒子的相互作用,并导致无法通过单独组件的检查来预测的涌现现象。这些涌现属性证明了multiparticle系统丰富而复杂的本质。总之,multiparticle系统的概念是我们理解物理宇宙的基础。从气体的行为到量子纠缠的复杂性,多个粒子之间的相互作用在塑造物质性质方面起着关键作用。随着这一领域研究的不断推进,我们可以期待在现实本质方面揭示更深刻的见解,这些见解是由multiparticle相互作用的复杂性和奇妙性推动的。