ferromagnetic
简明释义
英[ˌferəʊmæɡˈnetɪk]美[ˌferoʊmæɡˈnetɪk]
adj. [物] 铁磁的;铁磁体
英英释义
Relating to materials that exhibit strong magnetic properties and can become permanently magnetized when exposed to a magnetic field. | 与表现出强磁性并在暴露于磁场时可以永久磁化的材料有关。 |
单词用法
铁磁材料;强磁性质 | |
铁磁共振 |
同义词
磁性的 | Iron is a common ferromagnetic material used in various applications. | 铁是一种常见的铁磁材料,广泛应用于各种领域。 | |
铁磁性 | 铁磁材料可以保持其磁化状态。 | ||
永久磁铁 | Permanent magnets are often made from ferromagnetic materials. | 永久磁铁通常由铁磁材料制成。 |
反义词
例句
1.When they gradually increased the repulsive forces between the atoms, they observed several features indicating that the gas had become ferromagnetic.
他们利用红外线激光束捕获超冷锂原子气团,将其冷却到仅比绝对零度高亿分之十五开尔文。当逐渐增加原子间斥力时,研究人员观察到的几个现象表明气体已经变得具有强磁性。
2.These disc covered with the ferromagnetic materials.
这些圆盘覆盖铁磁材料。
3.It is believed that magnetic survey is the effective technique to search for ferromagnetic objects underwater.
通过总结,笔者认为磁法探测技术是寻找水下磁性物体的最有效的方法。
4.This paper discusses various permeability's of ferromagnetic materials used in electric machines.
本文讨论电机中铁磁材料的各种不同的磁导率。
5.Barkhausen noise analysis (BNA) is a distinctive measure for testing microscopic stresses and metallurgical structure in ferromagnetic materials.
巴氏噪声分析(BNA)是一种检测铁磁材料微观应力及金相组织的独特方法。
6.A new method for determining Curie point of ferromagnetic minerals is introduced in this article.
本文介绍了一种测试铁磁性矿物居里点的新方法。
7.A ferromagnetic shaft journal is suspended in a magnetic field which is excited by surrounding excitation coils.
铁磁性轴颈处在由激发线圈激发的磁场内。
8.The stress testing based on counter magnetostriction effect of ferromagnetic materials is a new technique.
基于铁磁材料逆磁致伸缩效应的应力测试是一种新技术。
9.In a ferromagnetic 铁磁性 material, the magnetic moments of atoms align in the same direction.
在铁磁性材料中,原子的磁矩沿同一方向排列。
10.The ability of ferromagnetic 铁磁性 materials to retain magnetization is crucial for data storage devices.
铁磁性材料保持磁化的能力对数据存储设备至关重要。
11.The ferromagnetic 铁磁性 properties of certain alloys make them useful in electrical applications.
某些合金的铁磁性特性使它们在电气应用中非常有用。
12.When heated above a certain temperature, ferromagnetic 铁磁性 materials lose their magnetism.
当加热到某一温度以上时,铁磁性材料会失去其磁性。
13.Iron is a common example of a ferromagnetic material, which means it can be magnetized easily.
铁是一个常见的铁磁性材料的例子,这意味着它可以轻易被磁化。
作文
The world of physics is filled with fascinating phenomena, one of which is the concept of ferromagnetic materials. These materials exhibit a unique property that allows them to become magnetized in the presence of an external magnetic field and retain their magnetization even after the external field is removed. This behavior is primarily due to the alignment of magnetic moments within the material, which can be understood through the principles of atomic structure and electron configuration.To understand ferromagnetic materials, we must first delve into the nature of magnetism itself. Magnetism arises from the motion of electrons, particularly their spin and orbital movements around the nucleus of an atom. In most materials, these magnetic moments are randomly oriented, resulting in no net magnetic effect. However, in ferromagnetic substances, such as iron, cobalt, and nickel, the magnetic moments tend to align parallel to each other, creating a strong overall magnetic field.This alignment occurs due to a phenomenon known as exchange coupling, which is a quantum mechanical effect. The exchange interaction favors parallel alignment of neighboring spins, leading to a state of lower energy. When an external magnetic field is applied to a ferromagnetic material, it causes the magnetic moments to align in the direction of the field, enhancing the material's magnetization. Once the external field is removed, the aligned moments remain in place, allowing the material to retain its magnetic properties.The applications of ferromagnetic materials are vast and varied. They are essential components in many everyday devices, including electric motors, transformers, and data storage devices like hard drives. In these applications, the ability to switch magnetization on and off is crucial, which is why understanding the behavior of ferromagnetic materials is vital for technological advancements.Moreover, ferromagnetic materials play a significant role in the development of new technologies. For example, researchers are exploring the use of ferromagnetic materials in spintronics, a field that aims to utilize the intrinsic spin of electrons in addition to their charge for information processing. This could lead to faster and more efficient electronic devices.In conclusion, the study of ferromagnetic materials provides insights into both fundamental physics and practical applications. Their unique properties make them indispensable in modern technology, and ongoing research continues to uncover new possibilities for their use. As we advance further into the realm of nanotechnology and quantum computing, the importance of ferromagnetic materials will only grow, highlighting the need for a deeper understanding of their mechanisms and behaviors. By continuing to explore this fascinating area of study, we can unlock new innovations that drive our technological future forward.
物理学的世界充满了迷人的现象,其中一个就是铁磁性材料的概念。这些材料表现出一种独特的特性,允许它们在外部磁场的存在下被磁化,并在外部场移除后保持其磁化状态。这种行为主要归因于材料内部磁矩的排列,这可以通过原子结构和电子配置的原则来理解。要理解铁磁性材料,我们必须首先深入研究磁性的本质。磁性源于电子的运动,特别是它们围绕原子核的自旋和轨道运动。在大多数材料中,这些磁矩是随机定向的,因此没有净磁效应。然而,在铁磁性物质中,如铁、钴和镍,磁矩倾向于平行排列,从而产生强烈的整体磁场。这种排列是由于一种称为交换耦合的现象,这是一种量子力学效应。交换相互作用有利于邻近自旋的平行排列,从而导致较低能量状态。当外部磁场施加到铁磁性材料时,它会使磁矩沿着场的方向对齐,增强材料的磁化。一旦外部场被移除,已对齐的磁矩仍然保持在位,使材料能够保留其磁性特性。铁磁性材料的应用广泛且多样。它们是许多日常设备的基本组成部分,包括电动机、变压器和数据存储设备(如硬盘)。在这些应用中,开关磁化的能力至关重要,这就是为什么理解铁磁性材料的行为对技术进步至关重要。此外,铁磁性材料在新技术的发展中发挥着重要作用。例如,研究人员正在探索在自旋电子学中使用铁磁性材料,这一领域旨在利用电子的内在自旋以及其电荷进行信息处理。这可能导致更快、更高效的电子设备。总之,研究铁磁性材料提供了对基础物理学和实际应用的深入见解。它们独特的属性使它们在现代技术中不可或缺,而持续的研究则不断揭示它们使用的新可能性。随着我们进一步进入纳米技术和量子计算的领域,铁磁性材料的重要性只会增加,突显出对其机制和行为更深入理解的必要性。通过继续探索这一迷人的研究领域,我们可以解锁推动技术未来发展的新创新。